Occupancy Map Guided Attributes Deblocking for Video－based Point Cloud Compression

Peilin Chen ${ }^{1}$ ，Shiqi Wang ${ }^{1}$ ，and Zhu Li ${ }^{2}$

${ }^{1}$ Department of Computer Science，City University of Hong Kong，Hong Kong SAR，China．
${ }^{2}$ Department of Computer Science \＆Electrical Engineering，University of Missouri－KC，MO 64111，USA．

Introduction

- What is Point Cloud?
- A collection of un-ordered points with
- Geometry: expressed as [x, y, z]
- Color Attributes
- Additional info: normal, timestamp, etc.
- Bringing immersive interactions:
- Augmented reality
- Telepresence conference
- Cultural heritage documentation
- ...

- But typically require massive storage and bandwidth
\rightarrow Point cloud compression (PCC) is highly demanded

Introduction

- Video-based Point Cloud Compression (V-PCC)

- Lossy compression introduce coding artifacts in attributes
\rightarrow degrade decoded PC quality
- *challenge*: attributes are irregular mixtures without strong scene priors
- *opportunity*: occupancies are available, which can provide potential clues

We proposed occupancy map guided attributes deblocking for V-PCC

Proposed framework

occupancy-guided non-local (OG-NL)
(a) The architecture of the proposed framework.
(b) overview of the OG-NL module.

Proposed framework

(a) The architecture of the proposed framework.
(b) overview of the OG-NL module.

Proposed framework

(a) The architecture of the proposed framework.
(b) overview of the OG-NL module.

Experiment settings

- Codec: version 18.0 of V-PCC reference software
- Training: Eight dynamic point cloud sequences ${ }^{1}+$ Thuman2.0²
- Patch size: 256x256
- Optimizer: ADAM (initial Ir: 1e-4)
- Loss: L1 with occupancy mask: $L(\Theta)=\frac{1}{N} \sum_{i=1}^{N}\left\|\left(m_{i}^{G T}-F\left(m_{i}^{\text {atr }}, m_{i}^{\text {occu }} \|\right)\right) \odot m_{i}^{o c c u}\right\|_{1}$,
- Test: Five sequences ${ }^{3}$ from the common test condition (CTC)

[^0]
Experiment results

Table 1: Overall BD-rate savings of the first 32 frames of each sequence with V-PCC reference software as the anchor under all-intra mode.

Class	Sequence	BD-AttrRate \downarrow			BD-TotalRate \downarrow		
		DCAD [10]	RNAN [16]	Proposed	DCAD [10]	RNAN [16]	Proposed
A	loot	1.7\%	-0.9\%	-2.0\%	1.3\%	-0.5\%	-1.5\%
	redandblack	-1.3\%	-3.1\%	-3.9\%	-0.9\%	-2.3\%	-3.1\%
B	longdress	-1.9\%	-3.1\%	-3.3\%	-1.6\%	-2.7\%	-2.8\%
C	basketball player	-2.6\%	-5.5\%	-7.5\%	-1.6\%	-3.6\%	-5.3\%
	dancer	-3.7%	-6.5\%	-8.5\%	-2.6\%	-4.6\%	-6.2\%
	Average	-1.5\%	-3.8\%	-5.0\%	-1.1\%	-2.7\%	-3.8\%

Table 2: Illustration of model complexities. Results of FLOPs are measured with assumption that the input size is 128×128.

	DCAD [10]	RNAN [16]	Proposed
Parameters (M)	0.296	2.725	0.913
FLOPs (G)	4.851	37.784	1.357

Experiment results

(a) Original Point Cloud

(b) V-PCC Decoded Point Cloud

(c) Enhanced Result with Our Method

Thank you！

[^0]: ${ }^{1}$ soldier, queen, thaidancer, model, exercise, andrew, david and phil.
 ${ }^{2}$ Yu, Tao, et al. "Function4d: Real-time human volumetric capture from very sparse consumer rgbd sensors." CVPR. 2021.
 ${ }^{3}$ loot, redandblack, longdress, basketball player and dancer.

