

Occupancy Map Guided Attributes Deblocking for

Video-based Point Cloud Compression

Peilin Chen¹, Shiqi Wang¹, and Zhu Li²

¹Department of Computer Science, City University of Hong Kong, Hong Kong SAR, China.

²Department of Computer Science & Electrical Engineering, University of Missouri-KC, MO 64111, USA.

Introduction

- What is Point Cloud?
 - A collection of un-ordered points with
 - Geometry: expressed as [x, y, z]
 - Color Attributes
 - Additional info: normal, timestamp, etc.
- Bringing **immersive** interactions:
 - Augmented reality
 - Telepresence conference
 - Cultural heritage documentation

But typically require massive storage and bandwidth
 → Point cloud compression (PCC) is highly demanded

Introduction

• Video-based Point Cloud Compression (V-PCC)

- Lossy compression introduce coding artifacts in attributes
 → degrade decoded PC quality
 - **challenge**: attributes are irregular mixtures without strong scene priors
 - *****opportunity*: occupancies are available, which can provide potential clues

We proposed occupancy map guided attributes deblocking for V-PCC

Proposed framework

(a) The architecture of the proposed framework.

(b) overview of the OG-NL module.

Proposed framework

(a) The architecture of the proposed framework.

(b) overview of the OG-NL module.

Proposed framework

(a) The architecture of the proposed framework.

(b) overview of the OG-NL module.

Experiment settings

- **Codec:** version 18.0 of V-PCC reference software
- **Training:** Eight dynamic point cloud sequences¹ + Thuman2.0²
- Patch size: 256x256
- **Optimizer:** ADAM (initial Ir: 1e-4)
- Loss: L1 with occupancy mask: $L(\Theta) = \frac{1}{N} \sum_{i=1}^{N} ||(m_i^{GT} F(m_i^{attr}, m_i^{occu} | \Theta)) \odot m_i^{occu}||_1,$
- **Test:** Five sequences³ from the common test condition (CTC)

¹ soldier, queen, thaidancer, model, exercise, andrew, david and phil.

² Yu, Tao, et al. "Function4d: Real-time human volumetric capture from very sparse consumer rgbd sensors." CVPR. 2021. ³ loot, redandblack, longdress, basketball player and dancer.

Experiment results

Table 1: Overall BD-rate savings of the first 32 frames of each sequence with V-PCC reference software as the anchor under all-intra mode.

Class	Sequence	BD-AttrRate ↓			BD-TotalRate \downarrow		
		DCAD [10]	RNAN [16]	Proposed	DCAD [10]	RNAN [16]	Proposed
А	loot	1.7%	-0.9%	-2.0%	1.3%	-0.5%	-1.5%
	redandblack	-1.3%	-3.1%	-3.9%	-0.9%	-2.3%	-3.1%
В	longdress	-1.9%	-3.1%	-3.3%	-1.6%	-2.7%	-2.8%
С	basketball player	-2.6%	-5.5%	-7.5%	-1.6%	-3.6%	-5.3%
	dancer	-3.7%	-6.5%	-8.5%	-2.6%	-4.6%	-6.2%
Average		-1.5%	-3.8%	-5.0%	-1.1%	-2.7%	-3.8%

Table 2: Illustration of model complexities. Results of FLOPs are measured with assumption that the input size is 128×128 .

	DCAD [10]	RNAN [16]	Proposed
Parameters (M)	0.296	2.725	0.913
FLOPs (G)	4.851	37.784	1.357

Experiment results

(a) Original Point Cloud

(b) V-PCC Decoded Point Cloud

(c) Enhanced Result with Our Method

Thank you !