DCC2023 Poster Session

Temporal Down-sampling based Video Coding with Frame-Recurrent Enhancement

Presenter: Keren He Co-authors: Keren He, Chen Fu, Chi Do -Kim Pham, Lu Zhang, and Jinjia Zhou HOSEI University 2023/3/23

Proposals

Experimental results

Coclusion

Traditional video coding VS Downsampling-based coding method

Traditional video codig method

Downsampling-based coding method

Related works—Downsampling-based coding method

Super-resolution (SR)

Unlike these works, we propose a temporal down sampling method to select down-sampled frames and use inter-frame information for enhancement.

- Ho, M. M., He, G., Wang, Z., & Zhou, J. (2020, January). Down-sampling based video coding with degradation-aware restorationreconstruction deep neural network. In International Conference on Multimedia Modeling (pp. 99-110). Springer, Cham.
- Fatemeh Nasiri, Wassim Hamidouche, Luce Morin, Gildas Cocherel, and Nicolas Dhollande, "A study on the impact of training data in cnn based super-resolution for low bitrate end-to-end video coding," in 2020 Tenth International Conference on Image Processing Theory, Tools and Applications (IPTA). IEEE, 2020, pp. 1–5.

Related work—EDVR: Video Restoration with Enhanced Deformable Convolutional Networks

Xintao Wang, Kelvin CK Chan, Ke Yu, Chao Dong, and Chen Change Loy, "Edvr: Video restoration with enhanced deformable convolutional networks," in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, 2019, pp. 0–0.

Proposals

II The Proposal 1—TDS Framework

Temporal Down-sampling based Video Coding

(a) Encoder structure

法政大学 HOSEI University

II The Proposal 1—TDS Framework

Temporal Down-sampling based Video Coding

The processing steps of EDVR for deblurring

(b) Decoder structure

法政大学

Original All intra(AI) configuration **VS** Our proposal modules based on the AI configuration

The Proposal 2—SRFR Framework

Up-sampling with frame-Recurrent enhancement

Enhancing the middle frame by referring to the first and last frames

The second frame is enhanced by referring to the first and third frames, and the fourth frame is enhanced by referring to the third and fifth frames.

The essence of enhancement is to refine the current frame by referring to nearby frames.

Experimental Results

Experimental Results

Figure 2. Rate-distortion curves for comparing VVC and our method. Results for sequences compressed by All Intra: (a) Fourpeople; (b) Partyscene; (c) KristenAndSara; (d) BQSquare.

Experimental Results

The second frame

Bitrate:1122.384 PSNR:30.1601 SSIM: 0.8928

Bitrate: 1122.384 PSNR: 32.3399 SSIM: 0.9004

The second frame

PSNR:23.7439

Bitrate:2603.088 PSNR:23.9060 SSIM: 0.7190 Bitrate:2603.088 Bi

PSNR:32.1974

SSIM: 0.8912

Bitrate:3122.208 PSNR:33.3524 SSIM: 0.9076

Bitrate:2603.088 PSNR:34.5032 SSIM: 0.9279

The second frame

PartyScene.

Bitrate:4934.4 PSNR:19.0278 SSIM: 0.3392

Bitrate:4934.4 PSNR:27.2456 SSIM: 0.8839

PSNR:31.9639

SSIM: 0.8920

Bitrate:6136.848

PSNR:26.8176

SSIM: 0.8259

Bitrate:4934.4

PSNR:28.6274 SSIM: 0.8784

Original Image (a) GT (b) Bicubic (c) EDVRDeblur (d) VVC (e) Ours **Figure 3.** Subjective results comparisons between the proposed method and the other three methods in PSNR (dB)/SSIM. Results for sequences: (1) KristenAndSara; (2) Fourpeople; (c)

Resolution	Sequence	Low Delay P		All Intra	
		BD-rate	BD-psnr	BD-rate	BD-psnr
1920x1080	Cactus	-60.47	0.468	-59.803	1.933
	BQTerrance	-39.261	0.543	-77.574	3.776
832x480	BQMall	-61.248	2.115	-75.61	5.102
	partyScene	-82.764	4.705	-85.455	7.238
416x240	BQSquare	-58.396	2.332	-80.975	7.677
1280x720	KristenAndSara	-65.751	4.517	-68.7	5.296
	Fourpeople	-58.582	0.679	-73.889	6.673
	Johnny	-61.863	0.679	-63.591	3.956
Average		-61.041875	2.00475	-73.199625	5.206375

Table 1. Objective comparison between our proposed method using AI configuration and the standard VVC in QPs = {22,27,32,37,42,47}. Ours outperforms VVC in the average BD-rate, BD-psnr. The table shows the results of the calculations for middle down-sampled frames.

Conclusion

100

IV Conclusion

We design a temporal down-sampling based video coding framework (TDS).It can be combined with all the existing coding standards.

A method of super-resolution with frame recurrent image enhancement (SRFR) is applied to improve the downsampled frames. The temporal information from high resolution frames can be fully used to improve the video quality through frame recurrent.

When compared to VVC, the BD-rate of the down-sampled frames can be reduced from 39.261% ~ 85.455 % in AL and LDP configuration.

For your listening

