DCC 2023, 21-24 March

Image Compressed Sensing Using Auxiliary Information for Efficient Coding

Bo Zhang^{*}, Di Xiao⁺, and Dongjing Shan^{*} *Army Engineering University, + Chongqing University

Bo Zhang(张波)

Army Engineering University

Since M is far less than N, y can be regarded as a compression version of x.

Hence, an efficient coding algorithm for CS samples is desirable.

Part 2 The proposed method The proposed method

2.1 Overview

PCS: parallel compressed sensing MDPC: measurement-domain prediction coding

IBS: iterative bivariate shrinkage

2.2 Image scrambling

2.3 Compress the scrambled image by using parallel CS (PCS).

Step 1: Generate the auxiliary information

The down sampling sub-image

The original image

Step 2: Generate an interpolated image

The down sampling sub-image

The interpolated image

Step 3: Measurement prediction.

$$Y_{\text{pred}} = \boldsymbol{\Phi} E(\boldsymbol{X}_{\text{pred}})$$
$$\boldsymbol{Y}_{\text{pred}} \in R^{M \times N}$$

The predicted CS samples

Step 4: Calculate the residuals.

The residuals

• Part 3 Simulations results

Compression performance evaluation

Images	Schemes	bpp				
		1.0	1.5	2.0	2.5	3.0
Lena	BCS-DPCM	27.23	29.35	30.93	32.71	34.04
	SPCS-GT	29.85	32.56	35.22	36.33	36.89
	$\operatorname{SPCS-MDPC}$	33.09	36.00	38.92	40.85	42.26
	SBCS	27.90	29.06	31.35	32.80	34.57
	2DCS	31.34	33.33	35.77	37.48	39.07
Barbara	BCS-DPCM	23.83	24.92	26.29	27.37	28.83
	SPCS-GT	27.22	31.23	33.42	35.13	35.82
	$\operatorname{SPCS-MDPC}$	31.01	33.92	36.65	38.74	40.41
	SBCS	24.32	25.09	26.79	28.43	29.91
	2DCS	27.02	28.61	31.47	33.75	35.65

Table 2: Comparison of PSNR (in dB) for the five tested schemes.

The proposed scheme has better compression performance than the previous schemes.

• Part 4 Conclusions

The main contribution of this paper is: we propose an image CS scheme by using auxiliary information to improve the R-D performance.

