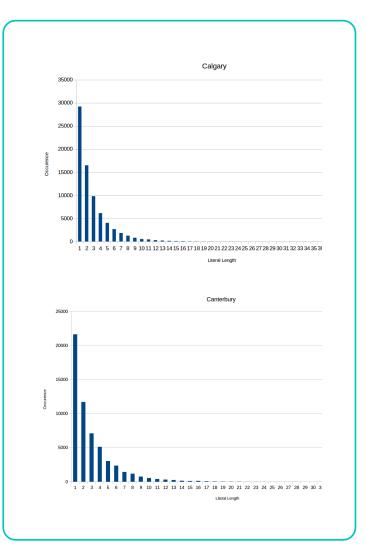
LZ4r - A New Fast Compression Algorithm for High-Speed Data Storage Systems

Rui Chen (ruichen@mathworks.com)

Lihao Xu (lihao@wayne.edu)



- The key to success of LZ4:
- consistently provides high throughput for universal file formats
- creates little overhead for uncompressible data files
- good trade-off between compression ratio and speed

LZ4r Inspiration

- Based on LZ4
- Inspired by two observation during match searching:
- lots of 0-length literals
- offset lengths tend to be short

LZ4r

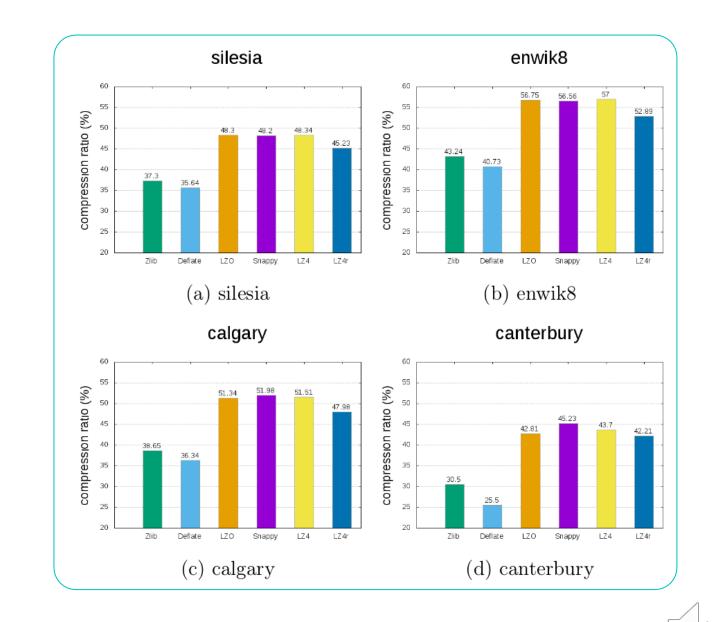
- Compression/decompression process is the same as LZ4
- New compression format:

token				body					
l_flag	literal length	o_flag	$match \\ length$	literal		match			
				length	data	offset	length		
		~							

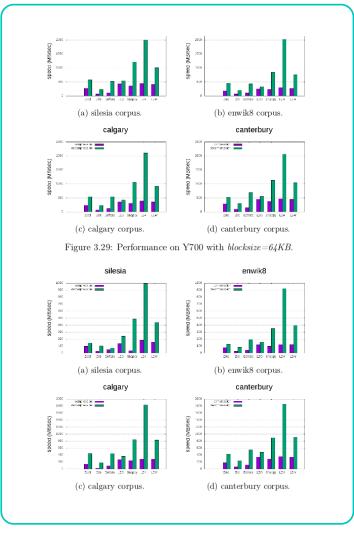
1 bit 3 bits 1 bit 3 bits 0-n bytes 0-L bytes 1/2 bytes 0-n bytes

LZ4r Evaluation

Platform	CPU Model	L1 Cache	L2 Cache	L3 Cache	Memory	OS
Y700	Intel(R) Core(TM) i7-6700HQ CPU @ 2.60GHz	$8 \times 64 \text{KB}$	$8 \times 256 \text{KB}$	6MB	16GB	Ubuntu 16.04
Grid	Intel(R) Xeon(R) CPU E5-2698 v3 @ 2.30GHz	$2 \times 64 \text{KB}$	$2 \times 256 \text{KB}$	4MB	8GB	CentOS 7


Comparison algorithms:

- Zlib 1.2.11, Deflate 1.3, LZO1x 2.10, Snappy 1.1.4, LZ4 1.9.2
- Corpus sets:
 - Silesia, Calgary, Canterbury, enwik8


LZ4r Evaluation – Compression Ratio

 Compression ratio: 5%-10% better (LZO, Snappy, LZ4)

LZ4r Evaluation – Speed

- Compression speed: similar (LZO, LZ4), 5%-10% faster (Snappy)
- Decompression speed: similar (Snappy), compromised (LZ4)

LZ4r Evaluation

- In practical systems, compression/decompression operations are at similar rate
- Calls compression/decompression to have similar speed
- LZ4r decompression speed is still much faster than compression, thus, is unlikely to become the bottleneck of the system

Thank you!

Rui Chen (<u>ruichen@mathworks.com</u>) Lihao Xu (lihao@wayne.edu)

