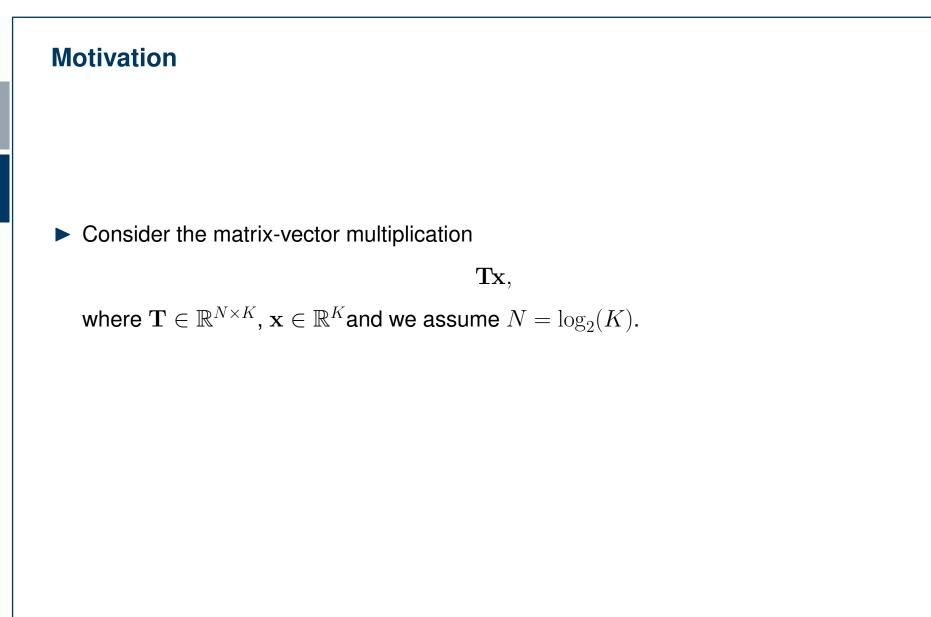


TECHNISCHE FAKULTÄT

Storage Constrained Linear Computation Coding

Alexander Karataev, Hans Rosenberger, Ali Bereyhi, Ralf Müller Institute for Digital Communications, Friedrich-Alexander-University Erlangen-Nürnberg February 28, 2023



Motivation

Consider the matrix-vector multiplication

$\mathbf{Tx},$

where $\mathbf{T} \in \mathbb{R}^{N \times K}$, $\mathbf{x} \in \mathbb{R}^{K}$ and we assume $N = \log_2(K)$.

Ubiquitous usage in signal processing and machine learning, e.g. weights in connections between layers of neural networks.

Motivation

Consider the matrix-vector multiplication

$\mathbf{Tx},$

where $\mathbf{T} \in \mathbb{R}^{N \times K}$, $\mathbf{x} \in \mathbb{R}^{K}$ and we assume $N = \log_2(K)$.

- Ubiquitous usage in signal processing and machine learning, e.g. weights in connections between layers of neural networks.
- Efficient computation of matrix-vector multiplications of high relevance.

$$\mathbf{T} \approx \hat{\mathbf{T}} = \mathbf{C}^{(0)} \prod_{i=1}^{L} \mathbf{W}^{(i)}.$$

• Approximation of *target matrix* T by factorizing into product

$$\mathbf{T} \approx \hat{\mathbf{T}} = \mathbf{C}^{(0)} \prod_{i=1}^{L} \mathbf{W}^{(i)}.$$

 \blacktriangleright $\mathbf{C}^{(0)}$ is the initial codebook matrix.

$$\mathbf{T} \approx \hat{\mathbf{T}} = \mathbf{C}^{(0)} \prod_{i=1}^{L} \mathbf{W}^{(i)}.$$

- \blacktriangleright C⁽⁰⁾ is the initial codebook matrix.
- ▶ $\mathbf{W}^{(i)}$ is the *wiring matrix* in *i*-th layer.

$$\mathbf{T} \approx \hat{\mathbf{T}} = \mathbf{C}^{(0)} \prod_{i=1}^{L} \mathbf{W}^{(i)}.$$

- \blacktriangleright C⁽⁰⁾ is the initial codebook matrix.
- ▶ $\mathbf{W}^{(i)}$ is the *wiring matrix* in *i*-th layer.
- ► All wiring matrices $\mathbf{W}^{(i)}$, $i \in \{1, ..., L\}$ have *s*-sparse columns.

$$\mathbf{T} pprox \hat{\mathbf{T}} = \mathbf{C}^{(0)} \prod_{i=1}^{L} \mathbf{W}^{(i)}.$$

- \blacktriangleright **C**⁽⁰⁾ is the initial codebook matrix.
- \blacktriangleright **W**⁽ⁱ⁾ is the *wiring matrix* in *i*-th layer.
- ► All wiring matrices $\mathbf{W}^{(i)}$, $i \in \{1, ..., L\}$ have *s*-sparse columns.
- ► $\mathbf{W}^{(i)} \in \{0, \pm 2^e\}^{K \times K}$ with *wiring exponents* $e \in \mathbb{Z}$.

$$\mathbf{T} pprox \hat{\mathbf{T}} = \mathbf{C}^{(0)} \prod_{i=1}^{L} \mathbf{W}^{(i)}.$$

- \blacktriangleright **C**⁽⁰⁾ is the initial codebook matrix.
- **W**⁽ⁱ⁾ is the*wiring matrix*in*i*-th layer.</sup>
- ► All wiring matrices $\mathbf{W}^{(i)}$, $i \in \{1, ..., L\}$ have *s*-sparse columns.
- ► $\mathbf{W}^{(i)} \in \{0, \pm 2^e\}^{K \times K}$ with *wiring exponents* $e \in \mathbb{Z}$.
- ► Consider matrix vector product $\mathbf{C}^{(0)} \prod_{i=1}^{L} \mathbf{W}^{(i)} \mathbf{x}$.

$$\mathbf{T} pprox \hat{\mathbf{T}} = \mathbf{C}^{(0)} \prod_{i=1}^{L} \mathbf{W}^{(i)}.$$

- \blacktriangleright **C**⁽⁰⁾ is the initial codebook matrix.
- **W**⁽ⁱ⁾ is the*wiring matrix*in*i*-th layer.</sup>
- ► All wiring matrices $\mathbf{W}^{(i)}$, $i \in \{1, ..., L\}$ have *s*-sparse columns.
- ► $\mathbf{W}^{(i)} \in \{0, \pm 2^e\}^{K \times K}$ with *wiring exponents* $e \in \mathbb{Z}$.
- Consider matrix vector product $\mathbf{C}^{(0)} \prod_{i=1}^{L} \mathbf{W}^{(i)} \mathbf{x}$.
- Entries of wiring matrices are integer powers of 2: multiplications are simple bit shifts.

• Approximation of *target matrix* T by factorizing into product

$$\mathbf{T} pprox \hat{\mathbf{T}} = \mathbf{C}^{(0)} \prod_{i=1}^{L} \mathbf{W}^{(i)}.$$

- \blacktriangleright **C**⁽⁰⁾ is the initial codebook matrix.
- **W**⁽ⁱ⁾ is the*wiring matrix*in*i*-th layer.</sup>
- ▶ All wiring matrices $\mathbf{W}^{(i)}$, $i \in \{1, ..., L\}$ have *s*-sparse columns.
- ► $\mathbf{W}^{(i)} \in \{0, \pm 2^e\}^{K \times K}$ with *wiring exponents* $e \in \mathbb{Z}$.
- Consider matrix vector product $\mathbf{C}^{(0)} \prod_{i=1}^{L} \mathbf{W}^{(i)} \mathbf{x}$.
- Entries of wiring matrices are integer powers of 2: multiplications are simple bit shifts.
- Sparse entries in wiring matrix limit number of required additions.

Ralf R. Müller, Bernhard Gäde, and Ali Bereyhi. Efficient Matrix Multiplication: The Sparse Power-of-2 Factorization. 2020

▶ Introduction of storage constraints: $e \in \mathcal{I}_{f}^{(i)}$, where

- ► Introduction of storage constraints: $e \in \mathcal{I}_{f}^{(i)}$, where
- ► $\mathcal{I}_{f}^{(i)} \subsetneq \mathbb{Z}$ is the *finite* set of wiring exponents in layer *i*.

- ► Introduction of storage constraints: $e \in \mathcal{I}_{f}^{(i)}$, where
- ► $\mathcal{I}_{f}^{(i)} \subsetneq \mathbb{Z}$ is the *finite* set of wiring exponents in layer *i*.
- Formulation of an optimization problem constraining the cardinality $|\mathcal{I}_{f}^{(i)}|$.

- ▶ Introduction of storage constraints: $e \in \mathcal{I}_{f}^{(i)}$, where
- ► $\mathcal{I}_{f}^{(i)} \subsetneq \mathbb{Z}$ is the *finite* set of wiring exponents in layer *i*.
- Formulation of an optimization problem constraining the cardinality $|\mathcal{I}_{f}^{(i)}|$.
- ▶ Proposal of sub-optimum search of $\mathcal{I}_{f}^{(i)}$ with reduced computational complexity.

Optimization

► Batch of i.i.d. randomly generated target matrices $\{\mathbf{T}_r\}_{r \in \{1,...,R\}}$.

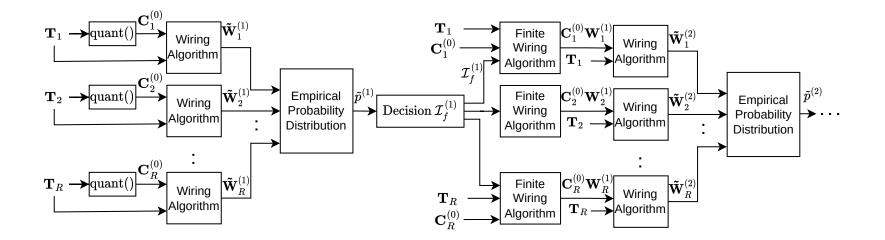
Optimization

- ► Batch of i.i.d. randomly generated target matrices $\{\mathbf{T}_r\}_{r \in \{1,...,R\}}$.
- ► Optimization, enforcing constraint on cardinality $|\mathcal{I}_{f}^{(i)}|$

$$\begin{array}{l} \underset{\mathcal{I}_{f}^{(1)},\ldots,\mathcal{I}_{f}^{(L)}}{\text{minimize}} & E(\mathcal{R}) = \frac{1}{KR} \sum_{r=1}^{R} \|\mathbf{T}_{r} - \hat{\mathbf{T}}_{r}\|_{F}^{2} \\ \text{subject to} & \hat{\mathbf{T}}_{r} = \mathbf{C}_{r}^{(0)} \prod_{i=1}^{L} \mathbf{W}_{r}^{(i)} \quad , \\ \mathbf{W}_{r}^{(i)} \in (\mathcal{B}_{f}^{(i)})^{K \times K} = \{0, \pm 2^{e} | e \in \mathcal{I}_{f}^{(i)}\} \quad , \\ |\mathcal{I}_{f}^{(i)}| = d \quad . \end{array}$$

$$(1)$$

Data-Driven Approach



► Let $\mathcal{I}_s := \{e \in \mathbb{Z} | \tilde{p}(e) > 0\}$ be support of wiring exponents from unconstrained wiring algorithm.

- ► Let $\mathcal{I}_s := \{e \in \mathbb{Z} | \tilde{p}(e) > 0\}$ be support of wiring exponents from unconstrained wiring algorithm.
- Full search based on exact evaluation of error $\mathcal{O}\left(LR\binom{|\mathcal{I}_s|}{d}K^3s\right)$.

- ▶ Let $\mathcal{I}_s := \{e \in \mathbb{Z} | \tilde{p}(e) > 0\}$ be support of wiring exponents from unconstrained wiring algorithm.
- Full search based on exact evaluation of error $\mathcal{O}\left(LR\binom{|\mathcal{I}_s|}{d}K^3s\right)$.
- Cubic complexity in K and number of possible subsets $\binom{|\mathcal{I}_s|}{d}$ prohibitive.

- ▶ Let $\mathcal{I}_s := \{e \in \mathbb{Z} | \tilde{p}(e) > 0\}$ be support of wiring exponents from unconstrained wiring algorithm.
- Full search based on exact evaluation of error $\mathcal{O}\left(LR\binom{|\mathcal{I}_s|}{d}K^3s\right)$.
- Cubic complexity in K and number of possible subsets $\binom{|\mathcal{I}_s|}{d}$ prohibitive.
- Surrogate Objective

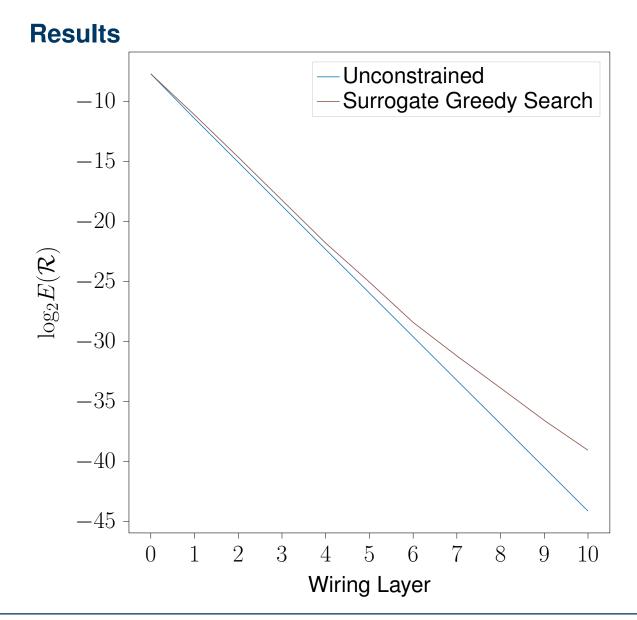
$$\begin{split} \mathcal{I}_{f}^{(i)} &= \underset{\tilde{\mathcal{I}}_{f}^{(i)} \subset \mathbb{Z}, |\tilde{\mathcal{I}}_{f}^{(i)}| = d}{\arg \max} \sum_{e \in \mathcal{I}_{s}^{(i)}} \operatorname{ReLU} \left(\underset{x \in \tilde{\mathcal{I}}_{f}^{(i)}}{\max} \hat{p}^{(i)}(e) \underbrace{\left(2^{2e} - (2^{x} - 2^{e})^{2} \right)}_{\operatorname{Approximate error reduction using wiring exponent x if wiring exponent e occured} \right). \end{split}$$

▶ i.i.d. zero mean Gaussian distributed target matrices $\mathbf{T} \in \mathbb{R}^{8 \times 256}$ with variance $\frac{1}{8}$.

- ▶ i.i.d. zero mean Gaussian distributed target matrices $\mathbf{T} \in \mathbb{R}^{8 \times 256}$ with variance $\frac{1}{8}$.
- Sample size R = 1000 matrices.

- ▶ i.i.d. zero mean Gaussian distributed target matrices $\mathbf{T} \in \mathbb{R}^{8 \times 256}$ with variance $\frac{1}{8}$.
- Sample size R = 1000 matrices.
- Sparsity s = 3.

- ▶ i.i.d. zero mean Gaussian distributed target matrices $\mathbf{T} \in \mathbb{R}^{8 \times 256}$ with variance $\frac{1}{8}$.
- Sample size R = 1000 matrices.
- Sparsity s = 3.
- Cardinality of finite wiring exponent sets d = 4.



Thank you for your attention!

TECHNISCHE FAKULTÄT

1 Appendix

F. FRIDA
1 AD CP
S E E E E E E E E E E E E E E E E E E E
A CHARTER AND A DE
7 3 3 7 3
S HANIA

Codebook Matrix

► Codebook matrix in layer *l*

$$\mathbf{C}^{(l)} := \mathbf{C}^{(0)} \prod_{i=1}^{l} \mathbf{W}^{(i)} = \mathbf{C}^{(l-1)} \mathbf{W}^{(l)}$$
(2)

▶ Choice of initial codebook as $C^{(0)} = q(T)$, with the quantization operator $q(\cdot)$ such that

$$q(T_{ij}) = \underset{x \in \mathcal{B}_{\text{init}}}{\arg\min} |T_{ij} - x|,$$

with $\mathcal{B}_{init} = \{0, \pm 2^e\}$, $e \in \mathcal{I}_{init} \subsetneq \mathbb{Z}$ and \mathcal{I}_{init} finite.

Defining L as the number of wiring layers,

$$\mathbf{T} \approx \hat{\mathbf{T}} = \mathbf{C}^{(L)}.$$

• According to (2), combination of column vectors of codebook matrix of preceding layer $C^{(l-1)}$ by wiring matrix $W^{(l)}$ for approximation of columns of T.

General Optimization Problem

• Choice of wiring matrices
$$\{\mathbf{W}^{(i)}\}_{i \in \{1,...,L\}}$$
 according to

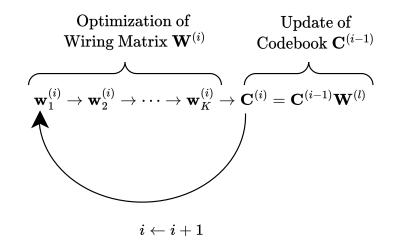
$$\{\mathbf{W}^{(i)}\}_{i\in\{1,\dots,L\}} = \min_{\{\tilde{\mathbf{W}}^{(i)}\in\{0,\pm2^e\}^{K\times K}, e\in\mathcal{I}_f^{(i)}, ||\mathbf{w}_k^{(i)}||_0=s\,\forall k\}_{i\in\{1,\dots,L\}}} ||\mathbf{T}-\mathbf{C}^{(0)}\prod_{i=1}^L \tilde{\mathbf{W}}^{(i)}||_F.$$
 (3)

Integer programming in LK^2 parameters and hence infeasible for large dimensions.

Split Optimization Problem

Split optimization of the set of matrices $\{\mathbf{W}^{(i)}\}_{i \in \{1,...,L\}}$ into subsequent optimization of columns $\mathbf{w}_k^{(i)}$ of individual matrices $\mathbf{W}^{(i)}$

$$\mathbf{w}_{k}^{(i)} = \underset{\mathbf{w} \in \{0, \pm 2^{e}\}^{K}, e \in \mathcal{I}_{f}^{(i)}, ||\mathbf{w}||_{0} = s}{\arg\min} ||\mathbf{t}_{k} - \mathbf{C}^{(i-1)}\mathbf{w}||_{2}.$$



► Integer programming in *K* unknowns, limited feasibility.

Greedy Search

lmprovement of feasibility by greedy search of the components of $\mathbf{w}_k^{(i)}$

