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Motivation

▶ Consider the matrix-vector multiplication

Tx,

where T ∈ RN×K , x ∈ RKand we assume N = log2(K).

▶ Ubiquitous usage in signal processing and machine learning, e.g. weights in
connections between layers of neural networks.

▶ Efficient computation of matrix-vector multiplications of high relevance.
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Approach

▶ Approximation of target matrix T by factorizing into product

T ≈ T̂ = C(0) L∏
i=1

W(i).

▶ C(0) is the initial codebook matrix.
▶ W(i) is the wiring matrix in i-th layer.
▶ All wiring matrices W(i), i ∈ {1, . . . , L} have s-sparse columns.
▶ W(i) ∈ {0, ±2e}K×K with wiring exponents e ∈ Z.
▶ Consider matrix vector product C(0) ∏L

i=1 W(i)x.
▶ Entries of wiring matrices are integer powers of 2: multiplications are simple bit shifts.
▶ Sparse entries in wiring matrix limit number of required additions.

Ralf R. Müller, Bernhard Gäde, and Ali Bereyhi. Efficient Matrix Multiplication: The Sparse Power-of-2 Factorization. 2020
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Contributions

▶ Introduction of storage constraints: e ∈ I(i)
f , where

▶ I(i)
f ⊊ Z is the finite set of wiring exponents in layer i.

▶ Formulation of an optimization problem constraining the cardinality |I(i)
f |.

▶ Proposal of sub-optimum search of I(i)
f with reduced computational complexity.
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Optimization

▶ Batch of i.i.d. randomly generated target matrices {Tr}r∈{1,...,R}.

▶ Optimization, enforcing constraint on cardinality |I(i)
f |

minimize
I(1)

f , . . . , I(L)
f

E(R) = 1
KR

R∑
r=1

∥Tr − T̂r∥2
F

subject to T̂r = C(0)
r

L∏
i=1

W(i)
r ,

W(i)
r ∈ (B(i)

f )K×K = {0, ±2e|e ∈ I(i)
f } ,

|I(i)
f | = d .

(1)
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Data-Driven Approach
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Computational Complexity of Data-Driven Search

▶ Let Is := {e ∈ Z|p̃(e) > 0} be support of wiring exponents from unconstrained
wiring algorithm.

▶ Full search based on exact evaluation of error O
(
LR

(|Is|
d

)
K3s

)
.

▶ Cubic complexity in K and number of possible subsets
(|Is|

d

)
prohibitive.

▶ Surrogate Objective

I(i)
f = arg max

Ĩ(i)
f ⊂Z,|Ĩ(i)

f |=d

∑
e∈I(i)

s

ReLU


max
x∈Ĩ(i)

f

p̂(i)(e)
(
22e − (2x − 2e)2)

︸ ︷︷ ︸
Approximate error reduction using

wiring exponent x if wiring exponent e occured


.

▶ Reduced Complexity O


LR|Is|dKs︸ ︷︷ ︸

Greedy optimization of
surrogate objective

+ RLK3s︸ ︷︷ ︸
Unconstrained wiring


.
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Simulation Settings

▶ i.i.d. zero mean Gaussian distributed target matrices T ∈ R8×256 with variance 1
8.

▶ Sample size R = 1000 matrices.
▶ Sparsity s = 3.
▶ Cardinality of finite wiring exponent sets d = 4.
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Results
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Thank you for your attention!
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1 Appendix



Codebook Matrix

▶ Codebook matrix in layer l

C(l) := C(0) l∏
i=1

W(i) = C(l−1)W(l) (2)

▶ Choice of initial codebook as C(0) = q(T), with the quantization operator q(·) such
that

q(Tij) = arg min
x∈Binit

|Tij − x|,

with Binit = {0, ±2e}, e ∈ Iinit ⊊ Z and Iinit finite.
▶ Defining L as the number of wiring layers,

T ≈ T̂ = C(L).

▶ According to (2), combination of column vectors of codebook matrix of preceding
layer C(l−1) by wiring matrix W(l) for approximation of columns of T.
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General Optimization Problem

▶ Choice of wiring matrices {W(i)}i∈{1,...,L} according to

{W(i)}i∈{1,...,L} = arg min
{W̃(i)∈{0,±2e}K×K , e∈I(i)

f , ||w(i)
k ||0=s ∀k}i∈{1,...,L}

||T − C(0) L∏
i=1

W̃(i)||F . (3)

Integer programming in LK2 parameters and hence infeasible for large dimensions.
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Split Optimization Problem

▶ Split optimization of the set of matrices {W(i)}i∈{1,...,L} into subsequent optimization

of columns w(i)
k of individual matrices W(i)

w(i)
k = arg min

w∈{0,±2e}K , e∈I(i)
f , ||w||0=s

||tk − C(i−1)w||2.

▶ Integer programming in K unknowns, limited feasibility.
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Greedy Search

▶ Improvement of feasibility by greedy search of the components of w(i)
k
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Example of Greedy Search
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