
Contextual
Pattern

Matching in
Less Space

Paniz Abedin

Introduction

Preliminaries

Our Algorithm

Example

Complexity
Analysis

Final Remarks

Contextual Pattern Matching in Less Space

Paniz Abedin,1 Oliver Chubet2 , Daniel Gibney3, Sharma V. Thankachan2

1Florida Polytechnic University
2North Carolina State University
3Georgia Institute of Technology

Contextual
Pattern

Matching in
Less Space

Paniz Abedin

Introduction

Preliminaries

Our Algorithm

Example

Complexity
Analysis

Final Remarks

Outline

1 Introduction

2 Preliminaries

3 Our Algorithm

4 Example

5 Complexity Analysis

6 Final Remarks

Contextual
Pattern

Matching in
Less Space

Paniz Abedin

Introduction

Preliminaries

Our Algorithm

Example

Complexity
Analysis

Final Remarks

Outline

1 Introduction

2 Preliminaries

3 Our Algorithm

4 Example

5 Complexity Analysis

6 Final Remarks

Contextual
Pattern

Matching in
Less Space

Paniz Abedin

Introduction

Preliminaries

Our Algorithm

Example

Complexity
Analysis

Final Remarks

Pattern Matching

Preprocess: A Text T[1, n]
Query: A Pattern P[1,m]
Output: The occurrences of P in T

Optimal Solution: O(n) space and O(m + occ) query time

Contextual
Pattern

Matching in
Less Space

Paniz Abedin

Introduction

Preliminaries

Our Algorithm

Example

Complexity
Analysis

Final Remarks

Motivation

Why Contextual Pattern Matching?

Contextual
Pattern

Matching in
Less Space

Paniz Abedin

Introduction

Preliminaries

Our Algorithm

Example

Complexity
Analysis

Final Remarks

Motivation

Why Contextual Pattern Matching?

If the substring T′ is repeated 1,000 times within T and P occurs within T′,
should our algorithm report all of these 1,000 occurrences of P?

This motivated the Contextual Pattern Matching problem introduced by Navarro,
which is likely better suited for such situations.

Contextual
Pattern

Matching in
Less Space

Paniz Abedin

Introduction

Preliminaries

Our Algorithm

Example

Complexity
Analysis

Final Remarks

Problem Definition

Contextual Pattern Matching Problem
Introduced by Navarro (SPIRE 2020)

Preprocess: A text T[1, n]
Query: (P, ℓ) A string P[1,m] and a length ℓ
Output: All c distinct strings XPY where |X | = |Y | = ℓ

Contextual
Pattern

Matching in
Less Space

Paniz Abedin

Introduction

Preliminaries

Our Algorithm

Example

Complexity
Analysis

Final Remarks

Problem Definition

Contextual Pattern Matching Problem
Introduced by Navarro (SPIRE 2020)

Preprocess: A text T[1, n]
Query: (P, ℓ) A string P[1,m] and a length ℓ
Output: All c distinct strings XPY where |X | = |Y | = ℓ

Solution: O(n) space and O(m + c) query time using suffix trees

Contextual
Pattern

Matching in
Less Space

Paniz Abedin

Introduction

Preliminaries

Our Algorithm

Example

Complexity
Analysis

Final Remarks

Problem Definition

Contextual Pattern Matching Problem
Introduced by Navarro (SPIRE 2020)

Preprocess: A text T[1, n]
Query: (P, ℓ) A string P[1,m] and a length ℓ
Output: All c distinct strings XPY where |X | = |Y | = ℓ

Solution: O(n) space and O(m + c) query time using suffix trees

Can we solve this problem using space proportional to a compressed form
of T?

Contextual
Pattern

Matching in
Less Space

Paniz Abedin

Introduction

Preliminaries

Our Algorithm

Example

Complexity
Analysis

Final Remarks

Results

Preprocess: A text T[1, n]
Query: (P, ℓ) A string P and a length ℓ
Output: All c distinct strings XPY where |X | = |Y | = ℓ

Publications Space Time
Navarro [SPIRE 2020] O(r̄ log(n/r̄)) O(|P|+ c log n)

Our result O(r log(n/r)) O(|P|+ c log ℓ · log(n/r))

r : The number of runs in the BWT of T
r̄ : The maximum of the number of runs in the BWT of T and its reverse

Contextual
Pattern

Matching in
Less Space

Paniz Abedin

Introduction

Preliminaries

Our Algorithm

Example

Complexity
Analysis

Final Remarks

Results

Preprocess: A text T[1, n]
Query: (P, ℓ) A string P and a length ℓ
Output: All c distinct strings XPY where |X | = |Y | = ℓ

Publications Space Time
Navarro [SPIRE 2020] O(r̄ log(n/r̄)) O(|P|+ c log n)

Our result O(r log(n/r)) O(|P|+ c log ℓ · log(n/r))

r : The number of runs in the BWT of T
r̄ : The maximum of the number of runs in the BWT of T and its reverse

r̄ = O(r log2 n) Space complexity could potentially be O(r log3 n)

Contextual
Pattern

Matching in
Less Space

Paniz Abedin

Introduction

Preliminaries

Our Algorithm

Example

Complexity
Analysis

Final Remarks

Outline

1 Introduction

2 Preliminaries

3 Our Algorithm

4 Example

5 Complexity Analysis

6 Final Remarks

Contextual
Pattern

Matching in
Less Space

Paniz Abedin

Introduction

Preliminaries

Our Algorithm

Example

Complexity
Analysis

Final Remarks

Suffix Trees, Suffix Arrays and BWT

Let T = T[1, n] be a text over an alphabet Σ:

Suffix Tree: The suffix tree ST of T is a compact trie over all strings in the
set {T[i , n] | i ∈ [1, n]}

Contextual
Pattern

Matching in
Less Space

Paniz Abedin

Introduction

Preliminaries

Our Algorithm

Example

Complexity
Analysis

Final Remarks

Suffix Trees, Suffix Arrays and BWT

Let T = T[1, n] be a text over an alphabet Σ:

Suffix Tree: The suffix tree ST of T is a compact trie over all strings in the
set {T[i , n] | i ∈ [1, n]}
Suffix array: The suffix array SA and the inverse suffix array ISA of T are
arrays of length n, such that SA[i] = j and ISA[j] = i iff T[j , n] is the ith
smallest suffix of T in lexicographic order

Contextual
Pattern

Matching in
Less Space

Paniz Abedin

Introduction

Preliminaries

Our Algorithm

Example

Complexity
Analysis

Final Remarks

Suffix Trees, Suffix Arrays and BWT

Let T = T[1, n] be a text over an alphabet Σ:

Suffix Tree: The suffix tree ST of T is a compact trie over all strings in the
set {T[i , n] | i ∈ [1, n]}
Suffix array: The suffix array SA and the inverse suffix array ISA of T are
arrays of length n, such that SA[i] = j and ISA[j] = i iff T[j , n] is the ith
smallest suffix of T in lexicographic order

Suffix range for a substring T[i , j]: The interval of the suffix array whose
values contain the starting indices of all suffixes of T having T[i , j] as a prefix

root

Suffix range of

Contextual
Pattern

Matching in
Less Space

Paniz Abedin

Introduction

Preliminaries

Our Algorithm

Example

Complexity
Analysis

Final Remarks

Suffix Trees, Suffix Arrays and BWT

Let T = T[1, n] be a text over an alphabet Σ:

Suffix Tree: The suffix tree ST of T is a compact trie over all strings in the
set {T[i , n] | i ∈ [1, n]}
Suffix array: The suffix array SA and the inverse suffix array ISA of T are
arrays of length n, such that SA[i] = j and ISA[j] = i iff T[j , n] is the ith
smallest suffix of T in lexicographic order

Suffix range for a substring T[i , j]: The interval of the suffix array whose
values contain the starting indices of all suffixes of T having T[i , j] as a prefix

LCP array: Stores the length of the longest common prefix between
consecutive suffixes in SA, LCP[i] = LCP(T[SA[i], n],T[SA[i − 1], n])

Contextual
Pattern

Matching in
Less Space

Paniz Abedin

Introduction

Preliminaries

Our Algorithm

Example

Complexity
Analysis

Final Remarks

Suffix Trees, Suffix Arrays and BWT

Let T = T[1, n] be a text over an alphabet Σ:

Suffix Tree: The suffix tree ST of T is a compact trie over all strings in the
set {T[i , n] | i ∈ [1, n]}
Suffix array: The suffix array SA and the inverse suffix array ISA of T are
arrays of length n, such that SA[i] = j and ISA[j] = i iff T[j , n] is the ith
smallest suffix of T in lexicographic order

Suffix range for a substring T[i , j]: The interval of the suffix array whose
values contain the starting indices of all suffixes of T having T[i , j] as a prefix

LCP array: Stores the length of the longest common prefix between
consecutive suffixes in SA, LCP[i] = LCP(T[SA[i], n],T[SA[i − 1], n])

BWT: is a permutation of T such that BWT[i] = T[SA[i]− 1]

Contextual
Pattern

Matching in
Less Space

Paniz Abedin

Introduction

Preliminaries

Our Algorithm

Example

Complexity
Analysis

Final Remarks

Suffix Trees, Suffix Arrays and BWT

Let T = T[1, n] be a text over an alphabet Σ:

Suffix Tree: The suffix tree ST of T is a compact trie over all strings in the
set {T[i , n] | i ∈ [1, n]}
Suffix array: The suffix array SA and the inverse suffix array ISA of T are
arrays of length n, such that SA[i] = j and ISA[j] = i iff T[j , n] is the ith
smallest suffix of T in lexicographic order

Suffix range for a substring T[i , j]: The interval of the suffix array whose
values contain the starting indices of all suffixes of T having T[i , j] as a prefix

LCP array: Stores the length of the longest common prefix between
consecutive suffixes in SA, LCP[i] = LCP(T[SA[i], n],T[SA[i − 1], n])

BWT: is a permutation of T such that BWT[i] = T[SA[i]− 1]

r : The number of equal-letter runs in the BWT. It is known that r is within
logarithmic factors from several other popular compression measures,
including the LZ77 parse size

Contextual
Pattern

Matching in
Less Space

Paniz Abedin

Introduction

Preliminaries

Our Algorithm

Example

Complexity
Analysis

Final Remarks

Fully Functional Suffix Trees in BWT-Runs Bounded Space

Gagie et al. provide a data structure of size O(r log(n/r)) for a given text T[1, n]
that can simulate a suffix tree ST

Find the suffix range of any pattern P[1,m] in O(m) time.

Find SA[i], ISA[i], or LCP[i] in O(log(n/r)) time for any i ∈ [1, n].

Find the string depth of any node in the suffix tree in O(log(n/r)) time.

Find RMQLCP(a, b) = argmina≤k≤b LCP[k] in O(log(n/r)) time for any
a ≤ b ∈ [1, n].

Find lowest common ancestor of two nodes u and v , LCA(u, v), in
O(log(n/r)) time.

Compute the Weiner-link, WLink(v , a), i.e., if v represents string α then the
node that represents string a ◦ α, where ◦ denotes concatenation, in time
O(log logw (n/r))

1.

1w represents the machine word length.

Contextual
Pattern

Matching in
Less Space

Paniz Abedin

Introduction

Preliminaries

Our Algorithm

Example

Complexity
Analysis

Final Remarks

Outline

1 Introduction

2 Preliminaries

3 Our Algorithm

4 Example

5 Complexity Analysis

6 Final Remarks

Contextual
Pattern

Matching in
Less Space

Paniz Abedin

Introduction

Preliminaries

Our Algorithm

Example

Complexity
Analysis

Final Remarks

Main Theorem

Let T be a text of length n, and r be the maximum of the number of equal letter
runs of its BWT:

There is a data structure requiring O(r log(n/r)) space that finds the c
contextual pattern matches of (P[1,m], ℓ) in time O(m + c log ℓ · log(n/r)).

Contextual
Pattern

Matching in
Less Space

Paniz Abedin

Introduction

Preliminaries

Our Algorithm

Example

Complexity
Analysis

Final Remarks

Our Algorithm - Overview

1. Find the suffix range of occurrences of pattern P in SA, denoted as [sp, ep].

Contextual
Pattern

Matching in
Less Space

Paniz Abedin

Introduction

Preliminaries

Our Algorithm

Example

Complexity
Analysis

Final Remarks

Our Algorithm - Overview

1. Find the suffix range of occurrences of pattern P in SA, denoted as [sp, ep].

2. Partition [sp, ep] into k maximal intervals s.t suffixes within each interval
have a lcp ≥ m + ℓ.

Contextual
Pattern

Matching in
Less Space

Paniz Abedin

Introduction

Preliminaries

Our Algorithm

Example

Complexity
Analysis

Final Remarks

Our Algorithm - Overview

1. Find the suffix range of occurrences of pattern P in SA, denoted as [sp, ep].

2. Partition [sp, ep] into k maximal intervals s.t suffixes within each interval
have a lcp ≥ m + ℓ.

3. For every interval [spi , epi], let j ∈ SA[spi , epi] be chosen arbitrarily. Find the
length t of the longest string that precedes all occurrences of
T[j , j +m + ℓ− 1].

Contextual
Pattern

Matching in
Less Space

Paniz Abedin

Introduction

Preliminaries

Our Algorithm

Example

Complexity
Analysis

Final Remarks

Our Algorithm - Overview

1. Find the suffix range of occurrences of pattern P in SA, denoted as [sp, ep].

2. Partition [sp, ep] into k maximal intervals s.t suffixes within each interval
have a lcp ≥ m + ℓ.

3. For every interval [spi , epi], let j ∈ SA[spi , epi] be chosen arbitrarily. Find the
length t of the longest string that precedes all occurrences of
T[j , j +m + ℓ− 1].

• If t ≥ ℓ, find the suffix range for T[j − t, j +m + ℓ− 1] and add it to the
solution and finish with interval [spi , epi]

• Else, for each distinct α ◦ T[j − t, j +m + ℓ− 1] in T , find the suffix range of
them and recursively apply step 3 on them

Contextual
Pattern

Matching in
Less Space

Paniz Abedin

Introduction

Preliminaries

Our Algorithm

Example

Complexity
Analysis

Final Remarks

Our Algorithm - Overview

Suffix range of

Suffix range of

Contextual
Pattern

Matching in
Less Space

Paniz Abedin

Introduction

Preliminaries

Our Algorithm

Example

Complexity
Analysis

Final Remarks

Outline

1 Introduction

2 Preliminaries

3 Our Algorithm

4 Example

5 Complexity Analysis

6 Final Remarks

Contextual
Pattern

Matching in
Less Space

Paniz Abedin

Introduction

Preliminaries

Our Algorithm

Example

Complexity
Analysis

Final Remarks

Our Algorithm - Example

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
20 19 13 14 6 10 2 16 8 15 7 11 3 17 9 1 12 4 18 5

T = $cabcdabacabcaababda$
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0 0 1 1 3 2 3 2 1 0 2 1 2 1 0 4 2 1 0 2

Contextual
Pattern

Matching in
Less Space

Paniz Abedin

Introduction

Preliminaries

Our Algorithm

Example

Complexity
Analysis

Final Remarks

Our Algorithm - Example

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
20 19 13 14 6 10 2 16 8 15 7 11 3 17 9 1 12 4 18 5

T = $cabcdabacabcaababda$
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0 0 1 1 3 2 3 2 1 0 2 1 2 1 0 4 2 1 0 2

Contextual
Pattern

Matching in
Less Space

Paniz Abedin

Introduction

Preliminaries

Our Algorithm

Example

Complexity
Analysis

Final Remarks

Our Algorithm - Example

T = $cabcdabacabcaababda$
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
20 19 13 14 6 10 2 16 8 15 7 11 3 17 9 1 12 4 18 5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0 0 1 1 3 2 3 2 1 0 2 1 2 1 0 4 2 1 0 2

Contextual
Pattern

Matching in
Less Space

Paniz Abedin

Introduction

Preliminaries

Our Algorithm

Example

Complexity
Analysis

Final Remarks

Our Algorithm - Example

T = $cabcdabacabcaababda$
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
20 19 13 14 6 10 2 16 8 15 7 11 3 17 9 1 12 4 18 5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0 0 1 1 3 2 3 2 1 0 2 1 2 1 0 4 2 1 0 2

[20, 20]

 [3, 3]

Contextual
Pattern

Matching in
Less Space

Paniz Abedin

Introduction

Preliminaries

Our Algorithm

Example

Complexity
Analysis

Final Remarks

Our Algorithm - Step 1

1. Find the suffix range of occurrences of pattern P in SA, denoted as [sp, ep].

Solution: O(m) time using O(r log(n/r)) space data structures of Gagie et al.

Contextual
Pattern

Matching in
Less Space

Paniz Abedin

Introduction

Preliminaries

Our Algorithm

Example

Complexity
Analysis

Final Remarks

Our Algorithm - Step 2

2. Partition [sp, ep] into k maximal intervals s.t within each interval suffixes have
lcp of length ≥ m + ℓ.

Solution: O(k log(n/r)) time using O(r log(n/r)) space data structures of Gagie
et al.

Lemma

Given a suffix range, [sp, ep], and a length t, we can partition [sp, ep] into k
maximal intervals [sp1, ep1], [sp2, ep2], · · · and [spk , epk] where spi = epi−1 + 1,
such that suffixes within each interval have a longest common prefix of length ≥ t
in O(k log(n/r)) total time.

Proof: At most k number of RMQLCP(sp, ep)

Contextual
Pattern

Matching in
Less Space

Paniz Abedin

Introduction

Preliminaries

Our Algorithm

Example

Complexity
Analysis

Final Remarks

Our Algorithm - Step 3

Let l = m + ℓ
3. For every interval, [spi , epi] resulting from Step 2:

Find the length t of the longest string that precedes all occurrences of
T[j , j + l − 1] for any arbitrary j ∈ [spi , epi]

Contextual
Pattern

Matching in
Less Space

Paniz Abedin

Introduction

Preliminaries

Our Algorithm

Example

Complexity
Analysis

Final Remarks

Our Algorithm - Step 3

Let l = m + ℓ
3. For every interval, [spi , epi] resulting from Step 2:

Find the length t of the longest string that precedes all occurrences of
T[j , j + l − 1] for any arbitrary j ∈ [spi , epi]

• If t ≥ l Find the suffix range for T[j − t, j + l − 1]

Contextual
Pattern

Matching in
Less Space

Paniz Abedin

Introduction

Preliminaries

Our Algorithm

Example

Complexity
Analysis

Final Remarks

Our Algorithm - Step 3

Let l = m + ℓ
3. For every interval, [spi , epi] resulting from Step 2:

Find the length t of the longest string that precedes all occurrences of
T[j , j + l − 1] for any arbitrary j ∈ [spi , epi]

• If t ≥ l Find the suffix range for T[j − t, j + l − 1]

• Else, for all distinct α ∈ Σ, where α ◦ T[j − t, j + l − 1] is in T
▶ Find the suffix ranges of all distinct α ◦ T[j − t, j + l − 1] and recursively apply

step 3 on them

Contextual
Pattern

Matching in
Less Space

Paniz Abedin

Introduction

Preliminaries

Our Algorithm

Example

Complexity
Analysis

Final Remarks

Our Algorithm - Step 3

Let l = m + ℓ
3. For every interval, [spi , epi] resulting from Step 2:

Find the length t of the longest string that precedes all occurrences of
T[j , j + l − 1] for any arbitrary j ∈ [spi , epi]

• If t ≥ l Find the suffix range for T[j − t, j + l − 1]

• Else, for all distinct α ∈ Σ, where α ◦ T[j − t, j + l − 1] is in T
▶ Find the suffix ranges of all distinct α ◦ T[j − t, j + l − 1] and recursively apply

step 3 on them

Next, we show how to solve this step efficiently

Contextual
Pattern

Matching in
Less Space

Paniz Abedin

Introduction

Preliminaries

Our Algorithm

Example

Complexity
Analysis

Final Remarks

Our Algorithm - Step 3

Find the length t of the longest string that precedes all occurrences of
T[j , j + l − 1] for any arbitrary j ∈ [spi , epi]

Contextual
Pattern

Matching in
Less Space

Paniz Abedin

Introduction

Preliminaries

Our Algorithm

Example

Complexity
Analysis

Final Remarks

Our Algorithm - Step 3

Find the length t of the longest string that precedes all occurrences of
T[j , j + l − 1] for any arbitrary j ∈ [spi , epi]

Lemma

We can find the length t in O(log ℓ · log(n/r)) time.

Contextual
Pattern

Matching in
Less Space

Paniz Abedin

Introduction

Preliminaries

Our Algorithm

Example

Complexity
Analysis

Final Remarks

Our Algorithm - Step 3

Find the length t of the longest string that precedes all occurrences of
T[j , j + l − 1] for any arbitrary j ∈ [spi , epi]

Lemma

We can find the length t in O(log ℓ · log(n/r)) time.

We first prove the following lemma

Lemma

Let the suffix range [sp, ep] and value t be given. Let l be the string depth of the
node for [sp, ep]. We can check in O(log(n/r)) time whether all substrings
T[SA[i],SA[i] + ℓ− 1] for i ∈ [sp, ep] are preceded by the same length t substring.

Contextual
Pattern

Matching in
Less Space

Paniz Abedin

Introduction

Preliminaries

Our Algorithm

Example

Complexity
Analysis

Final Remarks

Our Algorithm - Step 3

Find the length t of the longest string that precedes all occurrences of
T[j , j + l − 1] for any arbitrary j ∈ [spi , epi]

Let [sp
′
i , ep

′
i] be the suffix range for T[j − t, j + l − 1]

Claim:

epi − spi = ep
′
i − sp

′
i

|LCA([sp′, sp′], [ep′, ep′])| ≥ t + l .

Contextual
Pattern

Matching in
Less Space

Paniz Abedin

Introduction

Preliminaries

Our Algorithm

Example

Complexity
Analysis

Final Remarks

Our Algorithm - Step 3

epi − spi = ep
′
i − sp

′
i

j-tj

Contextual
Pattern

Matching in
Less Space

Paniz Abedin

Introduction

Preliminaries

Our Algorithm

Example

Complexity
Analysis

Final Remarks

Our Algorithm - Step 3

|LCA([sp′, sp′], [ep′, ep′])| ≥ t + l .

j-tj

LCA([sp', sp'], [ep', ep'])

Contextual
Pattern

Matching in
Less Space

Paniz Abedin

Introduction

Preliminaries

Our Algorithm

Example

Complexity
Analysis

Final Remarks

Our Algorithm - Step 3

Lemma

Let the suffix range [sp, ep] and value t be given. Let l be the string depth of the
node for [sp, ep]. We can check in O(log(n/r)) time whether all substrings
T[SA[i],SA[i] + ℓ− 1] for i ∈ [sp, ep] are preceded by the same length t substring.

Proof: Using fully functional suffix trees in BWT-runs bounded space for LCA
and SA and ISA queries

Contextual
Pattern

Matching in
Less Space

Paniz Abedin

Introduction

Preliminaries

Our Algorithm

Example

Complexity
Analysis

Final Remarks

Our Algorithm - Step 3

Find the length t of the longest string that precedes all occurrences of
T[j , j + l − 1] for any arbitrary j ∈ [spi , epi]

Lemma

We can find the length t in O(log ℓ · log(n/r)) time.

Proof: Using exponential search to find the largest t such that all instances of the
substring T[j , j + l − 1] share the prefix T[j − t, j − 1] and t + l ≤ 2ℓ+m

Contextual
Pattern

Matching in
Less Space

Paniz Abedin

Introduction

Preliminaries

Our Algorithm

Example

Complexity
Analysis

Final Remarks

Our Algorithm - Step 3

3. For every interval, [spi , epi] resulting from Step 2:

Find the length t of the longest string that precedes all occurrences of
T[j , j + l − 1] for any arbitrary j ∈ [spi , epi]

• If t ≥ l Find the suffix range for T[j − t, j + l − 1]

• Else, for all distinct α ∈ Σ, where α ◦ T[j − t, j + l − 1] is in T
▶ Find the suffix ranges of all distinct α ◦ T[j − t, j + l − 1] and recursively apply

step 3 on them

Contextual
Pattern

Matching in
Less Space

Paniz Abedin

Introduction

Preliminaries

Our Algorithm

Example

Complexity
Analysis

Final Remarks

Our Algorithm - Step 3

For all distinct α ∈ Σ, where α ◦ T[j − t, j + l − 1] is in T, find the suffix
ranges of all distinct α ◦ T[j − t, j + l − 1]

Contextual
Pattern

Matching in
Less Space

Paniz Abedin

Introduction

Preliminaries

Our Algorithm

Example

Complexity
Analysis

Final Remarks

Our Algorithm - Step 3

For all distinct α ∈ Σ, where α ◦ T[j − t, j + l − 1] is in T, find the suffix
ranges of all distinct α ◦ T[j − t, j + l − 1]

How to find all distinct α ∈ Σ, where α ◦ T[j − t, j + l − 1] is in T?

Contextual
Pattern

Matching in
Less Space

Paniz Abedin

Introduction

Preliminaries

Our Algorithm

Example

Complexity
Analysis

Final Remarks

Our Algorithm - Step 3

Lemma

For a text T with a BWTT having r runs, there exists a data structure requiring
O(r) space such that given the suffix range [sp, ep] corresponding to a substring
T[i , j] and containing the start or end of at least one BWTT run, reports all
distinct α ∈ Σ such that α ◦ T[i , j] is a substring of T. This can be done in
constant time per α reported.

Contextual
Pattern

Matching in
Less Space

Paniz Abedin

Introduction

Preliminaries

Our Algorithm

Example

Complexity
Analysis

Final Remarks

Our Algorithm - Step 3

Lemma

For a text T with a BWTT having r runs, there exists a data structure requiring
O(r) space such that given the suffix range [sp, ep] corresponding to a substring
T[i , j] and containing the start or end of at least one BWTT run, reports all
distinct α ∈ Σ such that α ◦ T[i , j] is a substring of T. This can be done in
constant time per α reported.

Proof: By 1-D color range reporting structure given by Nekrich and Vitter
(2013), we obtain a data structure that requires O(r) space that, given a query
range, reports each distinct color in constant time

Contextual
Pattern

Matching in
Less Space

Paniz Abedin

Introduction

Preliminaries

Our Algorithm

Example

Complexity
Analysis

Final Remarks

Our Algorithm - Step 3

For all distinct α ∈ Σ, where α ◦ T[j − t, j + l − 1] is in T, find the suffix
ranges of all distinct α ◦ T[j − t, j + l − 1]

Solution: For each α ∈ Σ′, we find WLink(v , α). Each of these requires
O(log log(n/r)) time. This does not affect the time spent on this interval
asymptotically.

Contextual
Pattern

Matching in
Less Space

Paniz Abedin

Introduction

Preliminaries

Our Algorithm

Example

Complexity
Analysis

Final Remarks

Outline

1 Introduction

2 Preliminaries

3 Our Algorithm

4 Example

5 Complexity Analysis

6 Final Remarks

Contextual
Pattern

Matching in
Less Space

Paniz Abedin

Introduction

Preliminaries

Our Algorithm

Example

Complexity
Analysis

Final Remarks

Our Algorithm - Complexity

1. Find the suffix range of P,[sp, ep] O(m)

Contextual
Pattern

Matching in
Less Space

Paniz Abedin

Introduction

Preliminaries

Our Algorithm

Example

Complexity
Analysis

Final Remarks

Our Algorithm - Complexity

1. Find the suffix range of P,[sp, ep] O(m)

2. Partition [sp, ep] into k maximal intervals s.t suffixes within each interval

have a lcp ≥ m + ℓ. O(k log(n/r)), k ≤ c

Contextual
Pattern

Matching in
Less Space

Paniz Abedin

Introduction

Preliminaries

Our Algorithm

Example

Complexity
Analysis

Final Remarks

Our Algorithm - Complexity

1. Find the suffix range of P,[sp, ep] O(m)

2. Partition [sp, ep] into k maximal intervals s.t suffixes within each interval

have a lcp ≥ m + ℓ. O(k log(n/r)), k ≤ c

3. For each [spi , epi]:

3.1 Let j ∈ SA[spi , epi] be chosen arbitrarily. Find t,the length of the longest string

that precedes all occurrences of T[j , j + l − 1]. O(log ℓ · log(n/r))

3.2 If t ≥ l . find the suffix range for T[j − t, j + l − 1] O(log ℓ · log(n/r))

Contextual
Pattern

Matching in
Less Space

Paniz Abedin

Introduction

Preliminaries

Our Algorithm

Example

Complexity
Analysis

Final Remarks

Our Algorithm - Complexity

1. Find the suffix range of P,[sp, ep] O(m)

2. Partition [sp, ep] into k maximal intervals s.t suffixes within each interval

have a lcp ≥ m + ℓ. O(k log(n/r)), k ≤ c

3. For each [spi , epi]:

3.1 Let j ∈ SA[spi , epi] be chosen arbitrarily. Find t,the length of the longest string

that precedes all occurrences of T[j , j + l − 1]. O(log ℓ · log(n/r))

3.2 If t ≥ l . find the suffix range for T[j − t, j + l − 1] O(log ℓ · log(n/r))

3.3 Else, for each distinct α ◦ T[j − t, j + l − 1] in T , find the suffix range of them

and recursively apply step 3 on them O(c log ℓ log(n/r))

Contextual
Pattern

Matching in
Less Space

Paniz Abedin

Introduction

Preliminaries

Our Algorithm

Example

Complexity
Analysis

Final Remarks

Our Algorithm - Complexity

1. Find the suffix range of P,[sp, ep] O(|P|)
2. Partition [sp, ep] into k maximal intervals s.t suffixes within each interval

have a lcp ≥ m + ℓ. O(k log(n/r)), k ≤ c

3. For each [spi , epi]:

3.1 Let j ∈ SA[spi , epi] be chosen arbitrarily. Find t,the length of the longest string

that precedes all occurrences of T[j , j + l − 1]. O(log ℓ · log(n/r))

3.2 If t ≥ l . find the suffix range for T[j − t, j + l − 1] O(log ℓ · log(n/r))

3.3 Else, for each distinct α ◦ T[j − t, j + l − 1] in T , find the suffix range of them

and recursively apply step 3 on them O(c log ℓ log(n/r))

Total time complexity: O(|P|+ c log ℓ · log(n/r))

Contextual
Pattern

Matching in
Less Space

Paniz Abedin

Introduction

Preliminaries

Our Algorithm

Example

Complexity
Analysis

Final Remarks

Our Algorithm - Complexity

1. Find the suffix range of P,[sp, ep] O(|P|)
2. Partition [sp, ep] into k maximal intervals s.t suffixes within each interval

have a lcp ≥ m + ℓ. O(k log(n/r)), k ≤ c

3. For each [spi , epi]:

3.1 Let j ∈ SA[spi , epi] be chosen arbitrarily. Find t,the length of the longest string

that precedes all occurrences of T[j , j + l − 1]. O(log ℓ · log(n/r))

3.2 If t ≥ l . find the suffix range for T[j − t, j + l − 1] O(log ℓ · log(n/r))

3.3 Else, for each distinct α ◦ T[j − t, j + l − 1] in T , find the suffix range of them

and recursively apply step 3 on them O(c log ℓ log(n/r))

Total time complexity: O(|P|+ c log ℓ · log(n/r))

Total space complexity: O(r log(n/r))

Contextual
Pattern

Matching in
Less Space

Paniz Abedin

Introduction

Preliminaries

Our Algorithm

Example

Complexity
Analysis

Final Remarks

Outline

1 Introduction

2 Preliminaries

3 Our Algorithm

4 Example

5 Complexity Analysis

6 Final Remarks

Contextual
Pattern

Matching in
Less Space

Paniz Abedin

Introduction

Preliminaries

Our Algorithm

Example

Complexity
Analysis

Final Remarks

Conclusion

We revisited the Contextual Pattern Matching Problem introduced by
Navarro

We improved the space complexity without sacrificing the query time that
much

Our algorithm is independent to any data structures based on the reverse of
T

Our framework is based on the Fully Functional Suffix Trees for a compressed
form of T introduced by Gagie et al.

We provided an O(r log(n/r)) space solution that answers queries in
O(|P|+ c log ℓ · log(n/r)) time

Contextual
Pattern

Matching in
Less Space

Paniz Abedin

Introduction

Preliminaries

Our Algorithm

Example

Complexity
Analysis

Final Remarks

Final Remarks

If r ′ ≤ r , we can solve the problem in O(r ′ log(n/r ′)) space and
O(m + c log ℓ · log(n/r ′)) query time

The same techniques can also be used when different lengths are desired for
the strings X and Y occurring in the contextual pattern matches XPY .
Letting ℓ1 = |X | and ℓ2 = |Y |

Open problem: How to efficiently answer counting queries?

Contextual
Pattern

Matching in
Less Space

Paniz Abedin

Introduction

Preliminaries

Our Algorithm

Example

Complexity
Analysis

Final Remarks

Thank you!

