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Background

O Block-based coding: prediction, transform,
quantization

Blocking artifact

Q Coding artifacts
O Blocking artifact

O Ringing artifact
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Background

Q In-loop filters in VVC (Versatile Video Coding)
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Background

Q NNLF: Neural network-based loop filter
O Convolutional neural network (CNN)

O Supervised learning
O Input: compressed samples with artifacts
O Targeted output: uncompressed original samples

U Replace the traditional DBF

O Placed before SAO and ALF/CC-ALF

bitstream CABAC L’ lnvgrsg _’ Inverse LMC S (chrqma
J | quantization | | transform ‘ residue scaling)
N
l v
- Intra LMCS (inverse
l prediction luma mapping)
o— C(CIIP
o | NNLF
| . LMCS (forward Inter <3
luma mapping) | prediction SAO
ALF, CC-ALF

Reconstructed
Picture




Background

0 Many NNLF publications and contributions in JVET EEL
(Exploration Experiment)

O VVC reference software: VTM-11.0-nnvc (NNVC1.0)

O NNVC 3.0 (NCS1.0): two NNLF filters with best
performance have been adopted in the ref. software

Parameters | KMAC/Pixel | BD-Rate (%), | BD-Rate (%),
(M) (K) RA Al
NCS#0, JVET- 1.90 485 -8.71 -6.52
AA0088
NCS#1, JVET- 3.12 539 -9.44 -7.26
AAO0111




Motivation

O Two filters in NNVC 3.0 (NCS1.0) are of relevant high
complexity, though the gainis around 9%.

d KMAC/Pixel is more than 400, while CPU decoding
time is several hundreds times of the VTM anchor.

O Difficult to be deployed in real-world applications.

Parameters | KMAC/Pixel | BD-Rate (%), | BD-Rate (%),
(M) (K) RA Al
NCS#0, JVET- 1.90 485 -8.71 -6.52
AA0088
NCS#1, JVET- 3.12 539 -9.44 -7.26
AAO0111




Proposed model: baseline model

U Baseline model: JVET-X0140 CNN based model, which has around 5%
gain with 33.6 KMA(C/Pixel

O Inputs: 4 luma tensors, 2 chroma, 1 Quantization Step, 3 Boundary
Strength
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Proposed model: Convolutional Neural Network with Fused CP
Decomposition (CP Fused)

L The 3x3 convolutions of each hidden layer are decomposed into 4
layers with rank R, i.e., CP decomposition:

- 1st layer: IXIXKXR pointwise convolution
- 2nd layer: 3XIXRXR separable convolution
- 3rd layer: 1Ix3XRXR separable convolution

«4th layer: IXIXRxK pointwise convolution
O K=24, M=72,R=24, =6, n =11
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Proposed model: CP Decomposition

O Regular convolution for output channel t can be written as:
x+é6 y+6 S

Vix,y,t) = Z Z ZK(i—x+6,j—y+5,s,t)U(i,j,s)

i=x-6 j=y-6s=1
* where, Uisinput tensor with S channels, Kis kernel of size 6x6x5 per output channel, and Vis output tensor.

The CP rank Rapproximation for the above convolution for channel t can be written as:

R x+6 y+6 S
Vix,y,t) = ZKt(t,r) Z K*(i—x+ 6,7) Z KYG—y+6,7) zKS(S,T') U(i,j,s)
r=1 i=x—6 j=y-§8 s=1

Where kernel K'is approximated as

K@G,j,s,t)= YR K¥(i—x+6,1)KY(—y+6,,7) K5(s,7) Kt(t,r)and KX, KY, K5, Ktare 6xR, 6xR, SxR, TxR tensors
along different dimensions.

The complexity of CP decomposition in terms of MAC/pixel is R(S + 28 + T) as compared to ST§2 for the regular
convolution. ‘
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Proposed model: Convolutional Neural Network with Fused CP

Decomposition (CP Fused)

O CP decomposition:

- 1st layer: IXIXKXR pointwise convolution

- 2nd layer: 3xIxRxR separable convolution

- 3rd layer: 1Ix3XRXR separable convolution

«4th layer: IXIXRxK pointwise convolution
O MACs/Pixel = 20.093 KMAC/Pixel (33.6 before)
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Proposed model: Convolutional Neural Network with Fused CP

Decomposition (CP Fused)

O Fusion of adjacent convolutional layers

O MACs/Pixel =16.265 KMAC/Pixel
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Experimental results

O Model trained using DIV2K dataset for Al and BVI-DVC dataset for RA,
Tensorflow

O VVC reference software VIM-11.0-nnvc (NNVC-1.0)
0 RD performance and CPU decoding time comparisons

Q0 CTC test sequences, All Intra (Al) and Random Access (RA)



Experimental results

0 Compared to NNV(C-2.0 anchor
QO 4.45%, 5.68%, 5.19% (Y, U, V, respectively) for RA

0 4.68%, 5.72%, 4.81% (Y, U, V, respectively) for Al

Table 1: BD-Rate (%) of the proposed fused CP decomposition model compared to
VTM NNVC-2.0 anchor, under RA and AI configurations. Negative value means coding

gain.
Class Random Access All Intra
Y U \Y Y U \Y

Al -4.88% | -3.60% | -4.36% | -4.56% | -4.48% | -4.23%
A2 -4.57% | -4.95% | -3.70% | -4.24% | -5.95% | -4.69%
B -4.07% | -6.08% | -5.93% | -4.23% | -5.90% | -4.98%
C -4.52% | -7.27% | -6.01% | -4.52% | -6.76% | -5.08%
D -5.90% | -6.23% | -6.70% | -4.94% | -5.07% | -4.86%
E - - - -6.21% | -5.02% | -4.88%
Overall -4.45% | -5.68% | -5.19% | -4.68% | -5.72% | -4.81%




Experimental results

0 Compared to baseline model JVET-X0140

0 0.56% luma loss, while decoding time is reduced by 19%

Table 2: BD-Rate (%) and CPU decoding time increase (%) of the proposed fused CP
decomposition model compared to JVET-X0140 baseline model, under RA and Al
configurations. Negative value means coding gain.

Class Random Access All Intra
Y U \Y ADecT Y U Vv ADecT
Al 0.13% | -0.67% | -1.74% | -19% | 0.17% | 0.16% | 0.16% | -24%
A2 0.54% | -0.72% | -1.45% | -19% | 0.57% | -0.27% | -0.41% | -24%
B 0.62% | -0.84% | -2.46% | -19% | 0.54% | 0.36% | 0.35% | -24%
C 0.82% | -0.26% | -1.62% | -18% | 0.52% | -0.04% | 0.33% | -24%
D 0.88% | 0.55% | -1.52% | -19% | 0.45% | 0.18% | -0.05% | -26%
E - - - 0.69% | 0.82% | 1.58% | -24%
Overall | 0.56% | -0.63% | -1.89% | -19% | 0.51% | 021% | 0.39% | -24%




Experimental results

[ Better trade-off

0 Compared with the
ones with best RD
performance, the
proposed model can
provide about half of
the coding gain with
3% of the complexity
(16.265 KMAC/Pixel).
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Figure 3: Complexity vs. gain trade-off comparisons of the state-
of-the-art NNLF models under RA.
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Conclusions

O Our proposed CP fused NNLF model provides 4.45% Luma gain with
16.265 KMAC/Pixel under NNV(C-2.0 anchor.

O Compared to JVET-X0140, it shows 0.56% Luma loss, while decoding
time is reduced by 19%.

0 Compared to the 2 best performance filters in JVET NNV(C-3.0, our
model have only 3% of the complexity (KMACs) while maintain half of
their coding gains.

Q Our proposed model has a better BD-Rate vs. complexity trade-off
according to the plot.
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