A Low Complexity Convolutional Neural Network with Fused CP Decomposition for In-Loop Filtering in Video Coding

Data Compression Conference 2023

Tong Shao₁, Jay N. Shingala₂, Peng Yin₁, Arjun Arora₁, Ajay Shyam₂, and Sean McCarthy₁

¹Dolby Laboratories, Inc., USA, ²Ittiam Systems Pvt. Ltd., India

Outline

□ Introduction

- Background
- Motivation
- □ Proposed model: Convolutional Neural Network with Fused CP Decomposition (CP Fused)
- □ Experimental results
- Conclusions

- Block-based coding: prediction, transform, quantization
- Coding artifacts
 Blocking artifact
 Ringing artifact
 ...

Blocking artifact

□ In-loop filters in VVC (Versatile Video Coding)

□ Filters:

- DBF (Deblocking filter): low-pass filters
- □ SAO (Sample adaptive offset)
- □ ALF (Adaptive loop filtering): Wiener Filter
- □ CC-ALF (Cross-component ALF)

- □ NNLF: Neural network-based loop filter
- □ Convolutional neural network (CNN)
- □ Supervised learning
 - □ Input: compressed samples with artifacts
 - □ Targeted output: uncompressed original samples
- □ Replace the traditional DBF
- □ Placed before SAO and ALF/CC-ALF

- Many NNLF publications and contributions in JVET EE1 (Exploration Experiment)
- □ VVC reference software: VTM-11.0-nnvc (NNVC 1.0)
- NNVC 3.0 (NCS 1.0): two NNLF filters with best performance have been adopted in the ref. software

	Parameters	KMAC/Pixel	BD-Rate (%),	BD-Rate (%),	
	(M)	(K)	RA	AI	
NCS#0, JVET-	1.90	485	-8.71	-6.52	
AA0088					
NCS#1, JVET-	3.12	539	-9.44	-7.26	
AA0111					

Motivation

- □ Two filters in NNVC 3.0 (NCS 1.0) are of relevant high complexity, though the gain is around 9%.
- □ KMAC/Pixel is more than 400, while CPU decoding time is several hundreds times of the VTM anchor.
- □ Difficult to be deployed in real-world applications.

	Parameters	KMAC/Pixel	BD-Rate (%),	BD-Rate (%),	
	(M)	(K)	RA	AI	
NCS#0, JVET-	1.90	485	-8.71	-6.52	
AA0088					
NCS#1, JVET-	3.12	539	-9.44	-7.26	
AA0111					

Proposed model: baseline model

- Baseline model: JVET-X0140 CNN based model, which has around 5% gain with 33.6 KMAC/Pixel
- Inputs: 4 luma tensors, 2 chroma, 1 Quantization Step, 3 Boundary Strength

n Hidden Layers

Proposed model: Convolutional Neural Network with Fused CP Decomposition (CP Fused)

- □ The 3x3 convolutions of each hidden layer are decomposed into 4 layers with rank R, i.e., CP decomposition:
 - 1st layer: 1x1xKxR pointwise convolution
 - 2nd layer: 3x1xRxR separable convolution
 - 3rd layer: 1x3xRxR separable convolution
 - •4th layer: 1x1xRxK pointwise convolution
- □ K=24, M=72, R=24, L=6, n = 11

Proposed model: CP Decomposition

G Regular convolution for output channel *t* can be written as:

$$V(x, y, t) = \sum_{i=x-\delta}^{x+\delta} \sum_{j=y-\delta}^{y+\delta} \sum_{s=1}^{s} K(i-x+\delta, j-y+\delta, s, t) U(i, j, s)$$

• where, U is input tensor with S channels, K is kernel of size $\delta x \delta x S$ per output channel, and V is output tensor.

The CP rank *R* approximation for the above convolution for channel *t* can be written as:

$$V(x, y, t) = \sum_{r=1}^{R} K^{t}(t, r) \left(\sum_{i=x-\delta}^{x+\delta} K^{x}(i-x+\delta, r) \left(\sum_{j=y-\delta}^{y+\delta} K^{y}(j-y+\delta, r) \left(\sum_{s=1}^{S} K^{s}(s, r) U(i, j, s) \right) \right) \right)$$

Where kernel *K* is approximated as

 $K(i, j, s, t) = \sum_{r=1}^{R} K^{x}(i - x + \delta, r) K^{y}(j - y + \delta, r) K^{s}(s, r) K^{t}(t, r)$ and K^{x} , K^{y} , K^{s} , K^{t} are $\delta \times R$, $\delta \times R$, $S \times R$, $T \times R$ tensors along different dimensions.

The complexity of CP decomposition in terms of MAC/pixel is $R(S + 2\delta + T)$ as compared to $ST\delta^2$ for the regular convolution.

Proposed model: Convolutional Neural Network with Fused CP Decomposition (CP Fused)

- □ CP decomposition:
 - 1st layer: 1x1xKxR pointwise convolution
 - 2nd layer: 3x1xRxR separable convolution
 - 3rd layer: 1x3xRxR separable convolution
 - •4th layer: 1x1xRxK pointwise convolution
- □ MACs/Pixel = 20.093 KMAC/Pixel (33.6 before)

Proposed model: Convolutional Neural Network with Fused CP Decomposition (CP Fused)

□ Fusion of adjacent convolutional layers

□ MACs/Pixel = 16.265 KMAC/Pixel

- Model trained using DIV2K dataset for AI and BVI-DVC dataset for RA, Tensorflow
- □ VVC reference software VTM-11.0-nnvc (NNVC-1.0)
- □ RD performance and CPU decoding time comparisons
- □ CTC test sequences, All Intra (AI) and Random Access (RA)

- □ Compared to NNVC-2.0 anchor
- □ 4.45%, 5.68%, 5.19% (Y, U, V, respectively) for RA
- □ 4.68%, 5.72%, 4.81% (Y, U, V, respectively) for AI

 Table 1: BD-Rate (%) of the proposed fused CP decomposition model compared to

 VTM NNVC-2.0 anchor, under RA and AI configurations. Negative value means coding gain.

Class	Random Access			All Intra			
	Y	U	V	Y	U	V	
A1	-4.88%	-3.60%	-4.36%	-4.56%	-4.48%	-4.23%	
A2	-4.57%	-4.95%	-3.70%	-4.24%	-5.95%	-4.69%	
В	-4.07%	-6.08%	-5.93%	-4.23%	-5.90%	-4.98%	
С	-4.52%	-7.27%	-6.01%	-4.52%	-6.76%	-5.08%	
D	-5.90%	-6.23%	-6.70%	-4.94%	-5.07%	-4.86%	
Е	-	-	-	-6.21%	-5.02%	-4.88%	
Overall	-4.45%	-5.68%	-5.19%	-4.68%	-5.72%	-4.81%	

□ Compared to baseline model JVET-X0140

□ 0.56% luma loss, while decoding time is reduced by 19%

Table 2: BD-Rate (%) and CPU decoding time increase (%) of the proposed fused CP decomposition model compared to JVET-X0140 baseline model, under RA and AI configurations. Negative value means coding gain.

Class	Random Access			All Intra				
	Y	U	V	ΔDecT	Y	U	V	∆DecT
A1	0.13%	-0.67%	-1.74%	-19%	0.17%	0.16%	0.16%	-24%
A2	0.54%	-0.72%	-1.45%	-19%	0.57%	-0.27%	-0.41%	-24%
В	0.62%	-0.84%	-2.46%	-19%	0.54%	0.36%	0.35%	-24%
С	0.82%	-0.26%	-1.62%	-18%	0.52%	-0.04%	0.33%	-24%
D	0.88%	0.55%	-1.52%	-19%	0.45%	0.18%	-0.05%	-26%
Е	-	-	-		0.69%	0.82%	1.58%	-24%
Overall	0.56%	-0.63%	-1.89%	-19%	0.51%	0.21%	0.39%	-24%

□ Better trade-off

 Compared with the ones with best RD performance, the proposed model can provide about half of the coding gain with 3% of the complexity (16.265 KMAC/Pixel).

Random Access

Figure 3: Complexity vs. gain trade-off comparisons of the stateof-the-art NNLF models under RA.

Conclusions

- Our proposed CP fused NNLF model provides 4.45% Luma gain with 16.265 KMAC/Pixel under NNVC-2.0 anchor.
- □ Compared to JVET-X0140, it shows 0.56% Luma loss, while decoding time is reduced by 19%.
- Compared to the 2 best performance filters in JVET NNVC-3.0, our model have only 3% of the complexity (KMACs) while maintain half of their coding gains.
- Our proposed model has a better BD-Rate vs. complexity trade-off according to the plot.

Q&A Thanks!