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Motivations

Wireless Sensors Clustered 
Topology [1]

• Source Nodes Compression: to benefit from the 
spatial/temporal correlation

Compressed Sensing
Network Coding

 Real field or finite fields?

• Intra-clusters Network Coding:  to increase robustness, 
and reduce retransmission cost

• Joint reconstruction: to overcome the all-or-nothing 
problem [2]

 Challenges of Compressed Sensing over finite fields

 F2OMP for practical use:  first steps of the work

[2] Soheil F, and Medard M. “A Power Efficient Sensing/Communication Scheme: Joint Source-Channel-Network Coding by Using Compressive Sensing.” 
In 49th Annual Allerton Conference on Communication, Control, and Computing (Allerton), 1048–54, 2011.

[1] Taghouti M, Kumar Chorppath A, Waurick T, and Fitzek F H.P. “Practical Compressed Sensing and Network Codingfor Intelligent Distributed 
Communication Networks.” 4th International Wireless Communications & Mobile Computing Conference (IWCMC), 2018, 962–68
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Compressed Sensing: quick overview

sensing matrix 𝑀

initial sparse 
vector 𝑥

measurement 
vector 𝑦

Wireless 
Network

Sink

reconstruction

l0-minimization problem: subject to with

 Reconstruction algorithms: 
• l1-minimization
• Belief Propagation (BP)
• (Orthogonal) Matching Pursuit (OMP) 
• … 
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State of the art : F2OMP a recovery algorithm over finite fields 
Orthogonal Matching Pursuit for Compressed Sensing over finite fields [3] 

2

 𝑦௧ାଵ(𝑡 + 1)

Closest column 
to 𝑦(𝑡)

1

3

4

At step 𝑡 : 

• Find the column with the minimum hamming distance to 𝑦(𝑡)

Sensing Matrix at step 𝑡
𝑦(𝑡 + 1)

Sensing Matrix at step 𝑡 + 1
𝑦(𝑡)

 𝑦(𝑡 + 1)

• Swap rows/columns to have a non-zero pivot

Algorithm stops when 𝑡 = 𝑚 or (𝑚 − 𝑡) final components of 𝑦 are equal to 0

• Gaussian elimination/substitution to calculate 𝑦(𝑡 + 1)

[3] Valerio Bioglio, Giulio Coluccia, and Enrico Magli. “Sparse image recovery using compressed sensing over finite alphabets,” in Proceedings of the IEEE 
International Conference on Image Processing (ICIP), Oct. 2014.
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F2OMP – Loop

 0  6  0  1  0  4 
7  0  1  0  3  0
5  0  2  3  0  0
0  4  0  0  7  5

1
0
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0

1
0
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0

1
0
𝟓
0

Sensing Matrices Initial Vector

Might be correct
stop

Obviously wrong: 5 ∉ 𝐺𝐹(2ଶ)
start over

𝐺𝐹(2ସ) 𝐺𝐹(2ଶ)

arithmetic operations

F2OMP

Problem: 
• several vectors are at the same minimal distance to y(t)
• once a decision is made - no way back 

 F2OMP-Loop: repeat when it is obviously wrong 
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Sensing Matrices for F2OMP

 0  𝟔  0  𝟏  0  𝟒 
𝟕  0  𝟏  0  𝟑  0
0  0  𝟐  0  0  𝟓
𝟓  0  0  𝟑  0  0
0  𝟒  0  0  𝟕  0

𝐹 ∶ Finite field of the form 𝐺𝐹(2) with 𝑝 ∈ 1, 2, 4, 8, 16
𝑀 : Sparse matrix with elements in F
𝑑 ∶ Number of non-zero elements per columns

Sensing Matrices M
𝐺𝐹(2ସ) ; 𝑑 = 2

 How to build these matrices in practice? 

 How to choose the parameters?

 Do all these matrices have the same recovery performance? 
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Sparse binary matrices over the real field [4] 

• Parity-check matrices of Low-Density Parity-Check (LPDC) code

• Construction method: Progressive Edge Growth (PEG) 

• Compressed Sensing over the real field (OMP)

  0  𝟏  0  𝟏  0 
 0  0  0  0  0
 0  𝟏  0  𝟏  0
0  0  0  0  0

 Outperform Gaussian matrices and sparse random matrices.

Parity-check matrix of LPDC code

 Optimal value for d that is parameter-dependent.

 Perform better when number of 4-cycles is minimum.

[4] Weizhi Lu, Kidiyo Kpalma, Joseph Ronsin. Sparse Binary Matrices of LDPC codes for Compressed Sensing. Data Compression Conference (DCC), Apr 2012, 
Snowbird (Utah), United States. 10 p. ffhal-00659236.
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Practical construction of sensing matrices over finite fields

generated with Evencol generated with PEGgenerated with Evenboth

• Comparison of 3 construction methods of parity-check matrices [5] [6] 

• Recovery over finite fields: “Success or Failure” 

• Simulation with matrices of different sizes and over different fields 

 Changing the position of the non zero elements has a higher impact on the recovery
performance than changing the values in the matrix 

[5] D. J. C. MacKay and R. M. Neal, “Near Shannon limit performance of low density parity check codes,” Electronics Letters, vol. 32, no. 18, pp. 1645–
1646, Aug. 1996.
[6] Xiao Yu Hu, Evangelos Eleftheriou, and Dieter M. Arnold, “Regular and irregular progressive edge-growth tanner graphs,” IEEE Transactions on 
Information Theory, vol. 51, no. 1, pp. 386–398, Jan. 2005.
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Simulation Results with different construction methods

Recovery probability depending on the number of non-zero
elements per column for 50 matrices of size 15 × 50 (red)
and 20 × 50 (blue) generated via PEG, Evenboth and
Evencol.

Recovery probability depending on the sparsity of X0 for 50
matrices of size 20 × 50 (blue) generated via Evenboth with
various distribution of non-zero elements per column.
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Simulation Results for up to 20 repetitions of F2OMP

Recovery probability of 100 matrices of size 20 × 50 generated via PEG when
applying F2OMP (red) and F2OMP-loop (blue) with 2 non-zero elements per
column (left) and 3 non-zero elements per column (right).
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Conclusion and outlook

• F2OMP-loop based on some prior knowledge on the initial vector

• Overview of sensing matrices for F2OMP

• Construction of efficient sensing matrices

• Simulations to demonstrate the gain in reliability of F2OMP-loop

 Practical requirements to operate Compressed Sensing over finite fields 

 Conditions on the sensing / coding matrices  

 Integration of F2OMP into a joint scheme
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