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Introduction: Constant Matrix Vector Multiplication (CMVM)

Objective

Compute the multiplication of an arbitrary vector & € R with a known, but arbitrary matrix
A € RVXK,

y=Ax

with minimum effort given some desired accuracy.

o Ubiquitous tasked performed in various signal processing application

@ A bulk of the computational burden of artificial neural networks (ANNs) in the inference
phase consists of CMVMs
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Introduction: Constant Matrix Vector Multiplication (CMVM)

Classical approach: Quantizing the entries of A independently:

—0.1120 —2.0713 1
A=|[-04436 16139 |~ |1 2
1.2395 —0.1762 1 -1

Canonical signed digit (CSD)

Binary representation: representation:
o Every additional bit improves the SQNR o Every additional signed digit improves the
by a factor of 4 (6dB). SQNR by a factor of 28 (14.5dB).
o Every additional bit requires half of an o Every additional signed digit requires one
addition per matrix entry on average. addition /subtraction per matrix entry on
average.
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Introduction: Constant Matrix Vector Multiplication (CMVM)

Classical approach: Quantizing the entries of A independently:

—0.1120 —2.0713 -3 - & —15
A=|-04436 16139 |~ |-L 2 |+[& -1
1.2395 —0.1762 1 -1 i =
Canonical signed digit (CSD)
Binary representation: representation:
o Every additional bit improves the SQNR o Every additional signed digit improves the
by a factor of 4 (6dB). SQNR by a factor of 28 (14.5dB).
o Every additional bit requires half of an o Every additional signed digit requires one
addition per matrix entry on average. addition /subtraction per matrix entry on
average.

Can we do better?
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Linear Computation Coding: Multiplicative Decomposition

Idea: Approximate the target matrix A by a product of matrices

A%FQFQFl

such that the product with a vector

Am%FQ...(FQ(Flm))

can be efficiently computed.

R. Miiller, B. G3de, A. Bereyhi, 'Linear computation coding: A framework for joint quantization and
computing’, Algorithms, 2022
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T\/Iultiplicative Decomposition: An Example

Wiring matrix W2 Codebook matrix Cp

—0.1120 —2.0713 I =5 0 -5 -2
A=|[-04436 16139 |~ |0 1-1 0 -3
1.2395  —0.1762 50 1 1+

—0.1094 —2.0625
—0.375 1.5
1.2422  —0.125

%

o Multiplications only by signed powers of two = Only bitshifts

@ We only need one addition in forming a linear combination of two vectors, irrespective of
the vector size.
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7|\/|u|tip|icative Decomposition: An Example

Wiring matrix W2 Codebook matrix Cq

—0.1120 —2.0713 l+5 0 0\ /1 -4 0 -1 2
A=|-04436 16139 | ~ 0 1+4% 0[]0 1-7 0 -1 2
1.2395 —0.1762 > 0 1/ \s o0 1 1+3 0
It 0 0 —0.1094 —2.0625
~ 0 144 0 —-0.375 1.5
L 0 12422 —0.125

Updated codebook matrix Co=WC
The approximation improves,
@ the larger the matrix,
@ the more matrix factors are used,

o the larger the number of codewords (ideally: #rows = 27<°Is),
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Problem Statement
Given A and C we want to obtain W, such that
Ax=WC

Sparse Recovery Problem: Obtaining the wiring coefficients

Row-wise optimization problem, with w,, and a,, being the n-th row of W and A,
respectively:

w,, = argmin ||a, — wC]|2
wel

S|
with C {w =Y i1y N s € {0,225}, Gy € {1, .., N} V.s}

s=1

(&

~
Set of all vectors w containing at most S non zero factors (signed powers of two).

What are our options to solve this problem?
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State of the Art: Discrete Matching Pursuit

Greedy, decision-directed algorithm based on the matching pursuit approach:
e Find the codeword with quantized scaling coefficient the minimizes the distance/error to
the target vector.

o Perform iteratively .S times.
@ Time complexity: Cubic in N, the number of rows of A.
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Example: Discrete Matching Pursuit

- .

w,=(0 0 0 0)
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Example: Discrete Matching Pursuit
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Example: Discrete Matching Pursuit
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Example: Discrete Matching Pursuit
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Example: Discrete Matching Pursuit
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Example: Discrete Matching Pursuit
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Example: Discrete Matching Pursuit

Approximation (S = 3): a, ~ w,C = lc; + }LCQ + 2¢4

7/17 Linear Computation Coding: Exponential Search and Reduced-State Algorithms



Exponential Search

To get a grasp on the optimum performance for solving our optimization problem:

e Exhaustive search to solve for w,, = argmin ||a,, — wC/||2.
wel

@ We only use a finite subset of signed powers of two, to keep the computation tractable,
i.e. Aexp C {0,422},

o Exponential time complexity both in N and | Aexpl, i.e. O(N®|Aexpl®).

o Computationally tractable only for small to medium matrix sizes and small S.
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Reduced-State Approach

Middle ground between DMP and the exponential search algorithm:
@ Don’t update wiring coefficients in w,, in every iteration.
o Instead keep a list of M best vectors within each iteration.
@ At termination select the vector with minimum error from the list.
@ Retains cubic time complexity in N, only quadratic complexity in M.
@ For M =1 the algorithm reduces to DMP.
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Example: Reduced-State Approach

Memory size: M =2

- .
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Memory size: M =2
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Example: Reduced-State Approach

Memory size: M =2
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Example: Reduced-State Approach

Memory size: M =2
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Example: Reduced-State Approach

Memory size: M =2
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Example: Reduced-State Approach

Memory size: M =2

Approximation (S = 3):

a, ~w,C = %cl +2¢y + lcg AN
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Numerical Evaluation

@ Target matrix entries drawn from an i.i.d. Gaussian distribution
o Averaged over 10° matrix entries (10* for exponential search algorithm)
@ Performance metrics:

o Computational Cost: Cumulative number of additions, i.e. the number of additions required
for multiplying z to the multiplicative decomposition of A
o Accuracy/Distortion: Signal to Quantization Noise Ratio

11/17 Linear Computation Coding: Exponential Search and Reduced-State Algorithms



Performance Comparison

120 -
Exponential Search
100 A <
Reduced-State (M=5) Parameters:
_. 801 o DMP: S =2
3
o o Exponential search:
=2 4
g 60 S =3, -Aexp =
{£2740 4245}
40 -
o Reduced-State: S =3,
20 M=5
0 . . . . ! ! !
0 100 200 300 400 500 600 700 800

Cumulative number of additions

12/17 Linear Computation Coding: Exponential Search and Reduced-State Algorithms



Performance Comparison: Varying S
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800

Parameters:

@ Dimension of A:
64 x 4

o DMP: §=2

o Exponential search:
S =3, Aexp =
{£2740 4245}

o Reduced-State:
Varying S, M =5



Performance Comparison: Varying M
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" Performance Comparison: Different Matrix Sizes

Relative savings over benchmark DMP for a target precision of 8 bit integer arithmetic
(SQNR > 47dB).

Exponential Reduced State
search S=3 S=4 S =
Matrix size S=3 M=5|M=10 | M=5|M=10 | M = M =10
16 x 2 17.8% 104% | 134% | 141% | 178% | 16.7% | 21.9%
16 x 4 34.5% 16.0% | 24.5% | 25.8% | 32.7% | 25.4% | 34.4%
32 x4 15.7% 105% | 129% | 14.0% | 17.2% | 184% | 22.3%
32 x6 25.3% 155% | 19.0% | 19.7% | 24.5% | 194% | 26.0%
64 x 4 12.9% 7.5% 9.8% 11.0% | 13.8% | 13.5% | 16.8%
64 x 6 14.9% 9.6 % 114% | 136% | 165% | 156% | 19.0%
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Savings of 10 % and more over DMP.
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7 Implementation: Practical Considerations

Linear computation coding is very efficient when implemented on reconfigurable hardware,
such as FPGAs.
@ Up to now S = 2: N adders required per wiring matrix performing independent
computations
@ Proposed algorithms harvest additional gains only for S > 2
o S = 3: Can be utilized efficiently due to the availability of efficient 3-input adders on
modern FPGAs (Xilinx patent).
e §=4,6,8,...: Can be implemented efficiently using adder trees.

A. Lehnert, P. Holzinger, S. Pfenning, R. Miiller, M. Reichenbach, 'Most ressource efficient matrix vector
multiplication on FPGA', IEEE Access, 2023
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Conclusion & Outlook

In summary:

@ Linear computation coding reduces the computational effort required for constant matrix
vector multiplication

@ Proposed algorithms improve over benchmark DMP benchmark by 10 % and more.

@ Proposed reduced state algorithm performs close to exponential search at a tractable
computational complexity.

@ Suitable for reconfigurable hardware due to efficient implementation of three input
additions on modern FPGAs.

Outlook:

@ Application to various types of neural networks.
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Thank you for your attention!

17/17 Linear Computation Coding: Exponential Search and Reduced-State Algorithms



	Title

