
RNA secondary structures: from ab initio prediction to better
compression, and back

Evarista Onokpasa
Joint work with Sebastian Wild Prudence Wong

Data Compression Conference 2023

March 22-24, 2023



Table of Contents

1 Introduction

2 Preliminaries

3 Related Work

4 Results

5 Conclusion

6 Reference

Evarista Onokpasa (University of Liverpool) RNA structure compression & prediction March 22-24, 2023 2 / 31



Introduction: RNA Basics

RNA, abbreviation of ribonucleic acid, are complex compounds of high molecular weight
that functions in cellular protein synthesis and occur in living organisms. The nitrogenous
bases in RNA are adenine(A), guanine(G), cytosine(C) and uracil(U), these bases are
linked together in a single strand which forms the primary structure(shown in 1).
However, this strand can fold over in different ways to form secondary bonds, this folding
over is known as its secondary structure(shown in 2 and 3).
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Introduction: Summary of our work

In this research work, we improve the state of the art in joint
compression of RNA (Ribonucleic acids) sequence and structure data
(Liu et al., BMC Bioinformatics, 2008).

we show that compression ratio can serve as a cheap and robust proxy
for comparing the prediction quality of different stochastic models,
which may help guide the search for better RNA structure prediction
models.
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Preliminaries: DotBracket Notation

DotBracket Notation for RNA An RNA sequence is a string of bases A, C, G, U. RNA
secondary structures can be represented by the dot-bracket notation: a string over
{•, (, )} where a base pair is denoted by matching parentheses () and an unpaired base
by •; below is a very simple example.

The dotbracket notation for this sample RNA is:

GGUCCCACC
(((...)))

We use “RNA” as an abbreviation for “a pair of an RNA sequence and its secondary
structure”.
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Preliminaries: More Detailed Example
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RNAs as Pairs of Characters

In this research work we define RNAs as Pairs of Characters i.e. Each RNA
Primary structure symbol is paired with its corresponding secondary
structure Symbol from {•,(,)}. So the RNA

GGUCCCACC
(((...)))

as pairs of characters is:[G
(

][G
(

][U
(

][C
•

][C
•

][C
•

][A
)

][C
)

][C
)

]
This representation is a simplification to [LYC+08] as it requires a single
grammar to produce each RNA.
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Preliminaries: SCFG and Earley Parser

SCFG Dot-bracket strings can be generated by a context-free grammar (CFG).
A stochastic context-free grammar (SCFG) is a tuple G = (N,T ,R, S ,P) such that
(N,T ,R, S) is a CFG and P : R → [0, 1] is a function satisfying∑

(A→α)∈R P(A → α) = 1 for all A ∈ N.

Earley Parser
The Earley Parsing algorithm [Ear70], similar to the CYK (Cocke–Younger–Kasami)
algorithm, is able to process any SCFG and efficiently determine whether a string belongs
to the language of the grammar. We use the Earley parser implementation by [Td17]
when comparing compression using various SCFGs and for prediction since it does not
require the rigid Chomsyky’s normal form for grammars.
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Preliminaries: Arithmetic Coding

Arithmetic Coding
Arithmetic Coding [WNC87] “assigns one codeword to each possible data set. . .
with the codeword drawn from the interval [0, 1)”. Each codeword uniquely identify
the subinterval, in which the probabilities of occurrence of the given dataset can be
found. (Unlike the Huffman encoding which spits out codewords per event in a dataset, arithmetic encoding produces
one codeword at the end of all the events in a given data set.).

An arithmetic encoder “must work in conjunction with a modeler that
estimates the probability of each possible event at each point in the
coding [. . .]. The models can be

adaptive (dynamically estimating the probability of each event based on all events that
precede it),
semi-adaptive (using a preliminary pass of the input file to gather statistics), or
nonadaptive (using fixed or
static probabilities for all files)” [HV94].

The next slide illustrates the Arithmetic encoding using a static model:
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Preliminaries: Arithmetic coding

RNA compression using SCFG and Arithmetic Coding
This compression is explained using the RNA sequence

[G
(

][A
•

][C
)

]
with the grammar of Liu

et al.: GL = (N,T ,R, S) has N = {S , L},
T = {

[A
(

]
,
[C
(

]
,
[G
(

]
,
[U
(

]
,
[A
)

]
,
[C
)

]
,
[G
)

]
,
[U
)

]
,
[A
•

]
,
[C
•

]
,
[G
•

]
,
[U
•

]
}, and rules R shown in the table below

rule prob. interval rule prob. interval rule prob. interval

S → LS 0.65 [0.00, 0.65) L →
[C
(

]
S
[G
)

]
0.10 [0.20, 0.30) L →

[A
•

]
0.10 [0.50, 0.60)

S → ε 0.35 [0.65, 1.00) L →
[G
(

]
S
[C
)

]
0.05 [0.30, 0.35) L →

[U
•

]
0.15 [0.60, 0.75)

L →
[A
(

]
S
[U
)

]
0.05 [0.00, 0.05) L →

[U
(

]
S
[G
)

]
0.05 [0.35, 0.40) L →

[C
•

]
0.10 [0.75, 0.85)

L →
[U
(

]
S
[A
)

]
0.15 [0.05, 0.20) L →

[G
(

]
S
[U
)

]
0.10 [0.40, 0.50) L →

[G
•

]
0.15 [0, 85, 1.00)

The grammar in this table is the Liu grammar [LYC+08] but the probabilites and
partitions were just made up for illustrative purpose.
The (unique) leftmost derivation using the grammar is as follows:

S ⇒ LS ⇒
[G
(

]
S
[C
)

]
S ⇒

[G
(

]
LS

[C
)

]
S ⇒

[G
(

][A
•

]
S
[C
)

]
S ⇒

[G
(

][A
•

]
ε
[C
)

]
S ⇒

[G
(

][A
•

][C
)

]
ε =

[G
(

][A
•

][C
)

]
,
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preliminaries: SCFG and arithmetic coding continued

rule prob. interval rule prob. interval rule prob. interval

S → LS 0.65 [0.00, 0.65) L →
[C
(

]
S
[G
)

]
0.10 [0.20, 0.30) L →

[A
•

]
0.10 [0.50, 0.60)

S → ε 0.35 [0.65, 1.00) L →
[G
(

]
S
[C
)

]
0.05 [0.30, 0.35) L →

[U
•

]
0.15 [0.60, 0.75)

L →
[A
(

]
S
[U
)

]
0.05 [0.00, 0.05) L →

[U
(

]
S
[G
)

]
0.05 [0.35, 0.40) L →

[C
•

]
0.10 [0.75, 0.85)

L →
[U
(

]
S
[A
)

]
0.15 [0.05, 0.20) L →

[G
(

]
S
[U
)

]
0.10 [0.40, 0.50) L →

[G
•

]
0.15 [0, 85, 1.00)

where the sequence on applied production rules is

S → LS , L →
[G
(

]
S
[C
)

]
, S → LS , L →

[A
•

]
, S → ε, S → ε.

We obtain the corresponding sequence of intervals from the rules,
[0.00, 0.65), [0.30, 0.35), [0.00, 0.65), [0.50, 0.60), [0.65, 1.00), [0.65, 1.00); which we
encode using arithmetic coding to obtain the final binary codeword: 0011010100100.

Evarista Onokpasa (University of Liverpool) RNA structure compression & prediction March 22-24, 2023 12 / 31



Preliminaries: RNA Secondary Structure

Secondary Structure RNAs have a Primary structure, which is a sequence of characters
from A,C,G,U.(show in 1) Biologically, this sequence can fold over in different ways to
form its secondary structure as shown in 2 and 3 below
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Preliminaries: Secondary Structure Prediction and Prediction Quality

Determining RNA secondary structure requires expensive, techniques like X-ray
crystallography [TM16]. This has driven the interest in RNA secondary structure
prediction.
SCFG can be used for RNA secondary structure prediction where terminals correspond to
bases and the leftmost derivation of an RNA sequence encodes a secondary structure of
the sequence.

The prediction quality can be measured using the metrics sensitivity and positive
predictive value (Predicted base pairs that are in the trusted structure are true positives (TP);
predicted base-pairs not in the trusted structure are false positives (FP); base-pairs in the trusted
structure but not predicted by the algorithm are false negatives (FN) ).
Then Sensitivity = TP

TP+FN and PPV = TP
TP+FP .
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Preliminaries: Earley Parser and Secondary Structure Prediction

Earley Parser and Secondary Structure Prediction
Given an RNA primary sequence w ∈ {a|c|g |u}∗ and a Stochastic Context Free Grammar
G for defining or generating RNA secondary structure. How accurately can we predict
the secondary structure for w? Earley Parser is a dynamic programming algorithm that
can explore all possible parse trees (to find the one with largest value).The steps are as
follows:

splitting w recursively into its substrings

producing all the possible parse trees for the splits

obtaining the scores (i.e. the product of probabilities of rules applied) for each parse
tree.

selecting the parse tree with the maximum score.

this parse tree is returned as the predicted secondary structure
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preliminaries continued

Suppose we have a simple RNA with primary sequence GUC and an SCFG,
GL = (N,T ,R,S) has N = {S , L}, T = {

[A
(

]
,
[C
(

]
,
[G
(

]
,
[U
(

]
,
[A
)

]
,
[C
)

]
,
[G
)

]
,
[U
)

]
,
[A
•

]
,
[C
•

]
,
[G
•

]
,
[U
•

]
},

with the rules and probability distribution shown here again.

rule prob. interval rule prob. interval rule prob. interval

S → LS 0.65 [0.00, 0.65) L →
[C
(

]
S
[G
)

]
0.10 [0.20, 0.30) L →

[A
•

]
0.10 [0.50, 0.60)

S → ε 0.35 [0.65, 1.00) L →
[G
(

]
S
[C
)

]
0.05 [0.30, 0.35) L →

[U
•

]
0.15 [0.60, 0.75)

L →
[A
(

]
S
[U
)

]
0.05 [0.00, 0.05) L →

[U
(

]
S
[G
)

]
0.05 [0.35, 0.40) L →

[C
•

]
0.10 [0.75, 0.85)

L →
[U
(

]
S
[A
)

]
0.15 [0.05, 0.20) L →

[G
(

]
S
[U
)

]
0.10 [0.40, 0.50) L →

[G
•

]
0.15 [0, 85, 1.00)

Using the Earley parser algorithm, we compute the parsetrees for the substring of the
primary sequence GUC using the following steps

The substrings are:
1 {{G},{U},{C}}
2 {{G},{UC}}
3 {{GU},{C}}
4 {{GUC}}

We obtain the possible parsetrees for the subststrings using the grammar
From the grammar definition the start symbol S has one rule
S ⇒ LS
we cannot arrive at the 3 substrings {{G},{U},{C}} because the rhs of the rule has
only 2 Non-terminals. The score for this substring split is 0.
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Preliminaries: Secondary Structure Prediction Example

for {{G},{UC}} there is only one
possible way to arrive at the
substrings this is shown in the
parse tree below. Multiplying all
the probabilities for rules
(0.652 ∗ 0.152 ∗ 0.10) applied we
obtain the score of 9.5 ∗ 10−3
[HIGHEST SCORE].

for the substrings {{GU}{C}}
The parse tree is shown here and
the score obtained is
(0.652 ∗ 0.352 ∗ 0.102 =

5.18 ∗ 10−4).

for the substrings {{GUC}} The
only unique parse tree which can
be produced which is different
from the other substring is shown
below and its score is
(0.652 ∗ 0.352 ∗ 0.10 ∗ 0.05 =

2.58 ∗ 10−4).
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Preliminaries continued

The parse tree with the highest score of 9.5 ∗ 10−3 is:

Thus the predicted secondary structure is: • • •
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Related Work

Liu et al. [LYC+08] produced a compressor they termed RNACompress by creating a
simple RNA grammar and applying an LL(1) parser and Huffman codes. The
compression ratio results showed an improvement over 3 other compression methods
existing at the time [LYC+08].

Naganuma et al. [NHY+20] explore a related method of SCFG compression closer to
grammar-based compression using straight-line programs. They create a stochastic
grammar from the text to compress with a variation of the RePair heuristic [LM00].

Friemel [Fri20] explored labelled trees property of RNA sequences for compression.
His algorithm contracts tree nodes formed from sequences of multiple dots in the
secondary structure or a sequence of multiple nested brackets in the dot-bracket
notation. After the node contraction the algorithm encodes the contracted node tree
using Huffman coding. RNAContract, is the term he used for his compression
method. In his work, the results of RNAContract outperformed RNAcompress in
terms of compression ratio.

Dowell and Eddy [DE04] used simple SCFGs to predict RNA secondary structure and
compared their prediction quality. Similarly, Schulz [Sch12] used probabilistic models
and SCFGs to predict RNA secondary structures.
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Our Approach: Compression
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Our Approach: Prediction
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Results - Joint Compression of RNA Structure

In this research we obtain the joint compression of RNA structure (i.e. the combined
primary and secondary structure). This compression was done using 8 refined stochastic
context free grammars from [DE04], 1 very detailed grammar from [Sch12] and the
[LYC+08] grammaer using 17 000 rna samples from [Fri20].

The compressor which we called the joint-rna-compressor was designed using java.The
compression results(using the [Sch12]) showed a 45% improvement over RNACompress by
Liu et al [LYC+08]!
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Results - Comparing The compression Results for Refined grammars

Compression of entire data set of 17,000 RNA samples from [Fri20] using 8 grammars
from [DE04], 1 grammar from [NS11] and 1 grammar from [LYC+08]. The results are
shown for the 3 different probability models and the static model is compared along side
Friemel’s RNAContract result. This is shown below and in the next slide. The means (are
shown with vertical bars) and distributions (are the shaded violin plot) of the normalized
compressed size using various grammars on Friemel’s RNA dataset.
(All compressed sizes are shown as bits per base. The figure below shows the compression quality of different grammars,
normalized to the (average) number of bits per base in the RNA).

2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75
compressed size (bits/base)

Compressed Size for various grammars (Friemel dataset, static model)

Liu et al.
Dowell Eddy G2
Dowell Eddy G3
Dowell Eddy G4
Dowell Eddy G5
Dowell Eddy G6
Dowell Eddy G7
Dowell Eddy G8
Nebel Scheid
Friemel RNAContract
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Results Continued

2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75
compressed size (bits/base)

Compressed Size for various grammars (Friemel dataset, semiadaptive model)

Liu et al.
Dowell Eddy G2
Dowell Eddy G3
Dowell Eddy G4
Dowell Eddy G5
Dowell Eddy G6
Dowell Eddy G7
Dowell Eddy G8
Nebel Scheid

2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75
compressed size (bits/base)

Compressed Size for various grammars (Friemel dataset, adaptive model)

Liu et al.
Dowell Eddy G2
Dowell Eddy G3
Dowell Eddy G4
Dowell Eddy G5
Dowell Eddy G6
Dowell Eddy G7
Dowell Eddy G8
Nebel Scheid
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Results Continued

Compression vs. Prediction Quality. using Mixed 80 data set from [DE04] as training data,
compression and prediction was carried out on the benchmark data from [DE04]. The geometric
mean of the prediction quality results (positive predictive value and sensitivity) was obtained, and the
result below was produced.
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Figure: Compression vs. Prediction (Static probabilities on Mixed)
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Results Continued
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Figure: Compression vs. Prediction (Static probabibilities on Mixed)

This scatter plot shows a clear and strong negative correlation between compressed size and
prediction quality; in particular, there is a clearly distinct cluster of grammars that simultaneously
give the best compression and the best prediction.
At least for the grammars from [DE04], this shows that one can use compressed size as a more
rigidly defined and robust proxy for secondary-structure prediction quality.

Grammars which produce better compression produce better
prediction!
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Conclusion

In this paper,

we demonstrated how domain knowledge of RNA secondary structures encapsulated
in stochastic context-free grammars for structure prediction can be used to obtain
the best single-RNA compression ratios known for this type of data.

We showed promising first evidence for the utility of compression ability as a cheap
and robust proxy for prediction quality for RNA secondary-structure prediction.

For future research, we could use compression ability as simpler guide, to discover
new promising models for secondary-structure prediction. It would be interesting to
investigate whether the robust correlation between prediction quality and
compressed size continues to hold for large grammars with many parameters.

Since many natural RNA secondary structures contain “pseudoknots”, a principled
approach for compressing such structures would be interesting. If the
compression-prediction correlation can be demonstrated in this domain as well.
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Thank you!
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