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Abstract

Reducing data storage and its associated costs is one of the major bottlenecks in large-scale
genomic projects. In this paper, we present a new method for efficient reference-free data
compression of genomic sequences, using a mixture of multiple finite-context models (FCMs)
and weighted local stochastic repeat models (WLSRMs). In the WLSRMs, we developed
a new cache-hash memory model for increasing the compression ratio, while decreasing
the RAM. The mixture is provided by a new architecture, that includes a neural network,
followed by arithmetic encoding. The method is implemented using the C language as
the JARVIS2 tool. Additionally, we provide a C/Bash implementation for using JARVIS2
in FASTA data. The results show an improvement in the compression of two extensive
datasets, while using lower computational resources relative to the second best compression
ratio tool. JARVIS2 is freely available at https://github.com/cobilab/jarvis2.

Introduction

Genomes are found in the most diverse places, for example, in extreme environments
as uranium mines [1], in soft and hard tissues [2, 3], ancient cadavers [4], important
food crops [5], marine environments [6], or deep subterranean habitats [7]. The en-
vironment and species interactions are key for genome adaptation, providing a wide
diversity in characteristics, namely high copy number, high heterogeneity, high level
of substitution mutations, or multiple rearrangements. Therefore, compressing ge-
nomic sequences requires the ability to model heterogeneous, dynamic, incomplete,
and imperfect data [8], including the ability to model specific characteristics that can
add substantial improvement upon general-purpose data compressors [9].

The genomic data compression field currently holds three decades of research;
it started with Biocompress [10] in 1993. After Biocompress, several algorithms
emerged, mostly modeling the existence of exact or approximate repeated and in-
verted repeated regions, namely with simple bit encoding, context modeling, or dic-
tionary approaches. More than fifty genomic data compression methods have been
described and some implemented into efficient tools [11–13]; for example, NMLComp
[14], GeNML [15], DNA-COMPACT [16], XM [17], CoGi [18], the GeCo-series [19–
21], DeepDNA [22], Jarvis [23].

With the increasing availability of multiple full genomes, the FASTA format
emerged. This format permitted standardizing the co-existence of genomic sequences
(in a visible horizontal range) along with annotations (headers). Usually, the biolog-
ical sequence is by a large margin the most abundant part of these data and, hence,



multiple tools use specialized compression algorithms combined with simple header
coding; for example, Deliminate [24], MFCompress [25], NAF [26], and MBGC [27].

The importance of high-ratio and reference-free compression of genomic data goes
beyond the usual purpose of reducing the data storage, also being crucial for analysis
applications, such as genomic sequence classification [28], rearrangement detection
[29], metagenomic inference [30], genome reconstruction [31], among others.

In this paper, we provide a data compression tool (JARVIS2) for genomic data,
including an extension to handle FASTA data. We combine the sensitivity of spe-
cific models, namely the usage of context and repeat models, with the power of neural
networks for context mixing. We apply caches to repeat models, being able to substan-
tially decrease the computational memory, while providing competitive or improved
results and additionally parallelize the methodology for reducing the computation
time, both for compression and decompression.

Method

JARVIS2 uses a combination of multiple finite-context models (FCMs), including
substitution tolerant context models (STCM) of several orders/depths, and weighted
local stochastic repeat models (WLSRM). The combination of these models is pro-
vided by a neural network, that mixes the probabilities estimated by each model. The
encoding is performed with an arithmetic encoder derived from [32]. The JARVIS2
decompression takes approximately the same computational time and memory as
used by the JARVIS2 data compressor. JARVIS2 is made available for free download
(GPv3 license) at https://github.com/cobilab/JARVIS2.

Figure 1 depicts the architecture of the method with identification of the layers for
the memory, probabilistic, and weight models. Also, it includes the division according
to the nature of the models, specifically FCMs and WLSRMs, which are explained in
the following subsections.

Finite-context models (FCMs) and substitution tolerant context models (STCMs)

Consider a sequence, x = x1, . . . , xN , over the alphabet Θ = {A,C,G,T}. The goal
is to minimize the data describing this sequence, without loss of information and
without using external information, besides the decompression source code. To this
end, combinations of FCMs and STCMs can be used to derive different probability
estimates for observing a symbol xi in a sequence, given an appropriate context.

A FCM is a probabilistic model relying on the Markov property, which provides
the probability of the next symbol given a certain context depth. These models have
been used extensively for encoding diverse types of data, including DNA sequences
(e.g., [19, 25]). STCMs are probabilistic-algorithmic models that can be used along
with FCMs when confronted with symbol substitutions in genomic sequences [19, 33].
These models can be automatically disabled, to reduce the number of calculations and
to increase the performance of the proposed method. Such an operation is automati-
cally performed using an array of size h (typically, the context size), which preserves
the past h hits. Observing a symbol in the sequence, the memory is checked for the



Figure 1: Architecture with the colored layers containing the Memory, Probabilistic, and
Weight Models. a) the left panel represents the context and substitution tolerant context
models (STCM); b) the right panel stands for the classes of local weighted stochastic repeat
models (WLSRM). The packed sequence is the past sequence representation using two bits.

symbol with the highest number of occurrences. If they are equal, a hit is saved in
the history array. Before getting to store a hit/miss in the array, it is checked for the
number of misses and, in the case they are more than a predefined threshold t, the
STCM will be disabled and the history array will be reset. This process is performed
for each nucleotide in the sequence.

One of the advantages of using a combination of FCMs and STCMs is that, for
the same context depth, the memory model can be shared, as shown in Figure 1.

Weighted local stochastic repeat models (WLSRMs)

The repeat model as been used in a few tools, namely XM [17], GReEn [34], and
JARVIS [23]. This model stores into memory the positions relative to the sequence
that has an identical k-mer identified in the past of the sequence. The positions are
stored, based on a causal processing approach, usually using a hash-table. The model
is used after a k-mer match occurs and is switched off after a certain threshold of
performance is reached.

The repeat models are called stochastic because to start a new repeat (after a
k-mer match), any position given the same k-mer has the same probability of being
used. The stochastic nature enables uniform distribution of the repeats to start in
different positions along the sequence. Another advantage is the absence of indexes to
represent the position of the repeat being used under the positions vector. As such,
the stochastic nature allows decreasing the memory inherent to the representation
of the hash-table. Along with the hash-table of positions, the sequence needs to be
continuously preserved in memory. To minimize its representation in memory, we
pack each DNA symbol into two bits, instead of the common eight bits.



In this paper, we specifically developed local repeat stochastic models based on
caches for JARVIS2. The cache enables to keep only the positions associated to the
latest l past symbols. Therefore, the model forgets the k-mer entries that are being
uploaded into the memory model when l is reached. Importantly, this approach is
key for JARVIS2, since it enables to use smaller k-mers without loosing sensitivity,
especially given the randomly selected position.

Finally, the repeat models are combined using a weighted approach. For each
repeat, the weight is adapted according to its past performance under a decaying
forgetting factor. The decaying forgetting factor is very small, since in this case the
weights need to adapt fast.

Artificial Neural Network (ANN)

The JARVIS compressor [35] uses a competitive prediction context-based model to
estimate, for each symbol, the best class of models to be used. Although the compu-
tation is fast, the accuracy is limited. In JARVIS2, we use an ANN that is imported
from GeCo3 [21] with minor adaptations. Accordingly, we use a multilayer perceptron
(MLP), which confers accurate and efficient predictions [36], while being one of the
most resource-efficient neural networks regarding time and memory usage. Moreover,
it is straightforward to implement and validate, and has proven to provide improved
compression ratios both for genomic [21] and proteomic sequences [37].

Specifically, the network has a single hidden layer. The activation function is the
sigmoid and the loss function is the mean squared error. The probabilities are stetched
according to the works of Matt Mahoney (http://mattmahoney.net/dc/dce.html).
The inputs to the network are the outputs of the FCMs, including the STCMs, and
of the WLSRMs. One node per symbol is used as output from the network. After the
result is transferred to the arithmetic encoder, the network is trained with the current
symbol using the stochastic gradient descent algorithm without momentum [38]. This
process requires only two parameters, namely the number of nodes of the hidden layer
and the learning rate.

Extension for compressing FASTA data

FASTA data are composed of two channels of information: headers and genomic se-
quences. For compressing FASTA data, the JARVIS2 Bash extension splits and com-
presses them using different methods. The headers are compressed using the BBB
(Big Block Burrows-Wheeler transform), developed by Matt Mahoney (http://www.
mattmahoney.net/dc/#bbb), operating with a 40 MiB block size. Since genomic se-
quences may have different symbols than the DNA bases from Θ, an additional chan-
nel of information is created to represent extra symbols. When a symbol is a known
DNA base, then, the extra channel uses the ASCII index of zero; otherwise, the self
symbol is used (an extra symbol includes a newline). Usually, these symbols are rare
and the majority of these sequences are constituted by zeros yielding a tiny amount
of bits after compression employing Bzip2 (https://sourceware.org/bzip2). The
genomic sequences are compressed with JARVIS2, using one of the available com-



pression modes. All channels of information are compressed in parallel. Finally, the
headers’ compressed data, extra symbols, and genomic sequences are merged in a tar
file. This permits to substitute JARVIS2 with another genomic compressor, enabling
the use of genomic compressors as specialized FASTA compressors. The compres-
sion levels are the same used by the JARVIS2 binary. Additionally, the JARVIS2
FASTA extension can be parameterized according to a custom block size and number
of threads.

Results

In this section, we evaluate the performance of JARVIS2 using two large benchmarks,
namely the full human and cassava genomes. The complete benchmarks and repli-
cation scripts are publicly available at https://github.com/cobilab/HumanGenome
and https://github.com/cobilab/CassavaGenome. These benchmarks contain the
full tables, including computational time and memory. Both benchmarks have been
performed with a desktop computer running Linux with Intel® Core™ i7-6700 CPU
@ 3.40GHz × 8, 31.2 GiB RAM, and a disk of 3 TB. All the runs have been success-
fully decompressed without loss of information. In both benchmarks, we excluded
computational tools that required more than 32 GB of RAM. This exclusion included
several tools, such as Cmix and MBGC.

The first benchmark uses the human genome T2T sequence (Chm13 version 2.0)
[39]. This sequence is composed of 3,117,292,120 DNA symbols from the alphabet
{A, C, G, T} corresponding to the concatenation of the whole human chromosomes.
Assuming an uniform distribution, where all symbols are considered independent, we
need 779, 323, 030 bytes to represent the full sequence without loss of information.
Therefore, this value serves as the baseline.

Although the sequence to compress contains approximately 779 MB of data (base-
line), reducing this value without loss of information is not an easy task. This is
proved by the inability of several tools to compress the data below this value. For
example, Gzip uses more than 779 MB to compress the data. The reason is that these
general-purpose data compression tools have models that are not designed to cope
with the characteristics of the genomic sequences.

The selection of the main tools to use is based in benchmark reviews [11–13] and
the compression challenge thread from the Data Compression community.

Figure 2 provides a selection of several benchmark entries, including the highest
compression ratio for each tool. In this figure, we can notice that the general-purpose
models bzip2 and lzma were not able to reduce the bps to less than 1.658 using the
best compression parameters.

An interesting entry was made by bsc-m03 (https://github.com/IlyaGrebnov/
bsc-m03) that showed reasonable compression capability in balance with the required
computational resources. Two of the best high-ratio data compression tools, namely
nncp and paq8l, achieved a bps of 1.514 and 1.571, respectively, while using much
more computational time (at least one order of magnitude above).

The specific-purpose data compressors NAF (best compression mode), Jarvis and
GeCo2 (optimized), and MFCompress (best compression mode) showed a minimum
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Figure 2: Human genome T2T compression benchmark (Time is for compression only).

bps of 1.560, led by MFCompress.
The first entry (Run1) of the GeCo3 tool provided a bps of 1.485, showing a clear

advance over previous tools. The internal models of GeCo3 were parameterized based
on our experience, namely with the use of two context models, with context orders
of 3 and 19, and a tolerant context model with a context order of 19. The models
were blended with a neural network and the cache-hash was set to a maximum of
20 collisions. To improve the GeCo3 compression factor, we optimized the models
of GeCo3, namely increasing the cache-hash at the expense of higher computational
time and RAM. We also added more context models while combining different orders
and tuned parameters used in the probability estimation. Finally, after increasing
the neural network and tuning the learning rate, we achieved a bps of 1.425 (Run39).

Although we could reduce more than 0.06 bps using substantially less computa-
tional time than the second best tool, we were aware of reaching close to the best
that these models could provide while spending considerable time and RAM.

The first entry of JARVIS2 (without many optimizations), reached a lower bps
than the best GeCo3, while using less computational time. After parameter opti-
mization, we reached a version (Run47) with a bps of 1.410, while using less than
half of the computational time and memory used in the best GeCo3 entry. Another
entry (Run46) provided a lower bps than the best GeCo3 version using one-third of
the time and RAM.

Finally, we optimized the models for an iterative search of the highest compression
and reached the best bps of 1.395 (Run52). As far as we know, this is the best value
achieved so far.

The second benchmark (Figure 3) is performed in the recent haplotype-resolved



sequenced Cassava (TME 204) complete genome [5]. This genome comprises over
762,392,783 DNA symbols. Assuming an uniform distribution, where all symbols
are considered independent, we need 95, 299, 097 bytes to represent the full sequence
without loss of information. Therefore, this value serves as the baseline.
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Figure 3: Cassava genome TME204 compression benchmark (Time is for compression only).

For running the JARVIS2 benchmark, we selected some of the best runs from
the human benchmark. Despite this selection, the nature of the cassava genome is
different, being characterized by extensive rearrangements and higher redundancy.

Generally, all the data compression tools behaved similar to the human bench-
mark, with a substantial reduction of the bps, roughly, half.

Similar to the human benchmark, in the cassava benchmark, JARVIS2 reached
the lowest bps. The best JARVIS2 entry was able to achive a bps of 0.725 (Run18),
while the second best tool, GeCo3, in the optimized version, was able to attain 0.798
(Run7), although using extensively more RAM.

Although not presented in this article, the decompression speed can be a very
important feature, for example, for the integration of decompression in data analysis
pipelines. GeCo2, GeCo3, JARVIS1, JARVIS2, and MFCompress are symmetric,
using approximately the same time and RAM for compression and decompression.
However, many other compressors are not symmetric, and some focus on providing
extremely fast decompression (for example, NAF and lzma).

Therefore, the utility of JARVIS2 is currently at the medium- and long-term stor-
age of the data, specifically of individual genomes, while for collections of similar
genomes MBGC and NAF are good alternatives. Since JARVIS2 predicts probabili-
ties for each symbol to compress with the highest average compression ratio according
to the tests we have made, it can be used to predict, compare, relate, and locate motifs
with higher accuracy in important computational biology applications.



Conclusions

In this paper, we presented JARVIS2, a reference-free genomic sequence compression
tool with an extension to compress losslessly data in FASTA format. We described the
methodology of JARIVS2, characterized by compression using multiple finite-context
models (FCMs) and weighted local stochastic repeat models (WLSRMs). These mod-
els are mixed using a custom Artificial Neural Network (ANN) followed by arithmetic
encoding. Specifically, in the WLSRMs, we developed a new memory model based on
a cache-hash that efficiently decreased the RAM associated with previous implemen-
tations and increased the compression ratio. We showed an increased compression of
all the datasets while reducing computational resources. Moreover, we showed that
JARVIS2 presents the best-known data compression ratios on the complete human
and cassava genomes.
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