Abstract Huffman Coding and PIFO Tree Embeddings

Keri D'Angelo★ Dexter Kozen ★ Cornell University
Computer Science Department
Ithaca, New York 14853-7501, USA ★ kd349@cornell.edu

→ kozen@cs.cornell.edu

K. D'Angelo and D. Kozen, "Abstract Huffman coding and PIFO tree embeddings," Tech. Rep. https://arxiv.org/abs/2301.02878, Cornell University, January 2023.

Introduction

- A similarity exists between Huffman coding and a recent algorithm developed for compiling PIFO (priority-in first-out) trees to trees of fixed shape, but they work with different underlying algebraic operations.
- We utilize the monad of *d*-ary prefix codes on the category Set; that is, $C: Set \to Set$ where CX is the set of pairs (C, r) such that C is a prefix code over a *d*-ary alphabet for a fixed $d \ge 2$ and $r: C \to X$ and $Ch: CX \to CY$ is defined by $Ch(C, r) = (C, h \circ r)$ for $h: X \to Y$.

Applications

- For Huffman coding, we want to minimize the value $\sum_{x \in C} |x| \cdot r(x)$, where r(x) is the frequency of letters assigned to the codeword x.
- For PIFO tree embeddings, we wish to minimize the value $\max_{x \in C} |x| + r(x)$, where r(x) is the height of the subtree.

Algorithm

Suppose we are given a multiset M of weights in W, $|M| \ge 2$. We would like to find an optimal tree for this multiset of weights. The following is a recursive algorithm to find such an optimal tree.

1. Say there are $n \geq 2$ elements in M. Let $k \in \{2, ..., d\}$ such that $n \equiv k \mod (d-1)$. Let $a_0, ..., a_{k-1}$ be the k elements of least weight. Form the object

$$(\{0,1,\ldots,k-1\},i\mapsto a_i)\in CW.$$

If there are no other elements of M, return that object.

2. Otherwise, let

$$M' = \{(\{0,1,\ldots,k-1\},i\mapsto a_i)\} \cup \{\eta_W(a) \mid a\in M\setminus \{a_0,\ldots,a_{k-1}\}\},\$$

a multiset of n - k + 1 < n elements of CW.

3. Recursively call the algorithm at step 1 with $M'' = \{ Cw(E, t) \mid (E, t) \in M' \}$, a multiset of elements of W. This returns a tree (D, s) of type CW that is optimal for M''. The bijective map $s: D \to M''$ factors as $Cw \circ s'$ for some bijective $s': D \to M'$, and $(D, s') \in C^2W$.

Flatten this to $\mu_W(D,s') \in \mathcal{C}W$ and return that value.

Application 1- Huffman Coding

- The multiset of weights comes from $W = \mathbb{R}_+ = \{a \in \mathbb{R} \mid a \geq 0\}$ with weighting $w(C,r) = \sum_{x \in C} r(x)$.
- (W, w) is an Eilenberg Moore algebra for the d-ary prefix code monad (\mathcal{C}, μ, η) .
- The order \leq on $\mathcal{C}W$ can be defined as follows- Let $\alpha: \mathcal{C}W \to W$ be defined as $\alpha(C,r) = \sum_{x \in C} |x| \cdot r(x)$ and define $(C,r) \leq (D,s)$ if $(C,r) \sim (D,s)$; that is, there is a bijective map $f: C \to D$ such that $r = s \circ f$ and $\alpha(C,r) \leq \alpha(D,s)$.

Theorem 1. The algorithm shown previously for the algebra (\mathbb{R}_+, w) and ordering relation \leq is equivalent to Huffman's algorithm and produces an optimal Huffman code for a given multiset of weights.

Application 2- PIFO Tree Embeddings

- The multiset of weights comes from $W = \mathbb{N}$ with weighting $w(C, r) = \max_{x \in C} |x| + r(x)$.
- (W, w) is an Eilenberg Moore algebra for the d-ary prefix code monad (\mathcal{C}, μ, η) .
- We define $(C,r) \le (D,s)$ if there is a bijective function $f: C \to D$ such that $r = s \circ f$ and $w(C,r) \le w(D,s)$.
 - **Theorem 2.** The algorithm shown previously for the algebra (\mathbb{N}, w) and ordering relation \leq is equivalent to determining whether an embedding of a PIFO tree into a bounded d-ary tree exists and finding the embedding if so.

References

- [1] A. Sivaraman, S. Subramanian, M. Alizadeh, S. Chole, S.-T. Chuang, A. Agrawal, H. Balakrishnan, T. Edsall, S. Katti, and N. McKeown, "Programmable packet scheduling at line rate," in *SIGCOMM*, 2016.
- [2] A. Alcoz, A. Dietmüller, and L. Vanbever, "SP-PIFO: Approximating push-in first-out behaviors using strict-priority queues," in *NSDI*, 2020.
- [3] A. Mohan, Y. Liu, N. Foster, T. Kappé, and D. Kozen, "Formal abstractions for packet scheduling," Tech. Rep. http://arxiv.org/abs/2211.11659, Cornell University, November 2022.
- [4] K. D'Angelo and D. Kozen, "Abstract Huffman coding and PIFO tree embeddings," Tech. Rep. https://arxiv.org/abs/2301.02878, Cornell University, January 2023.