
Computing Matching Statistics on Wheeler DFAs

Alessio Conte1 Nicola Cotumaccio2,3 Travis Gagie3

Giovanni Manzini1 Nicola Prezza4 Marinella Sciortino5

1University of Pisa, Italy

2GSSI, L’Aquila, Italy

3Dalhousie University, Halifax, Canada

4Ca’ Foscari University, Venice, Italy

5University of Palermo, Italy

1 / 24

Suffix trees

The suffix tree1 of a string is a general-purpose data structure which is
able to efficiently handle a variety of problems (pattern matching,
approximate pattern matching, shortest/longest substrings with some
desired properties, palindromes, and so on).

1P. Weiner, Linear Pattern Matching Algorithms, FOCS (SWAT) 1973.
2 / 24

Suffix trees

The suffix tree of a string can be compressed by exploiting the
repetitiveness of the string2.
It is also possible to build (variants of) suffix trees which are able to
solve pattern matching queries where some variables are fixed up to
a permutation3.

2T. Gagie, G. Navarro, N. Prezza, Fully Functional Suffix Trees and Optimal Text
Searching in BWT-Runs Bounded Space, JACM 2020.

3B. S. Baker, A Theory of Parametrized Pattern Matching: Algorithms and
Applications, STOC 1993.

3 / 24

Suffix trees

The main limitation of suffix trees is their space consumption.
As a consequence, suffix trees have been replaced with suffix arrays.
Suffix arrays allow to solve pattern matching queries, but they do not
have the whole functionality of suffix trees.

i Sorted suffixes SA[i]

1 $ 12
2 i$ 11
3 ippi$ 8
4 issippi$ 5
5 ississippi$ 2
6 mississippi$ 1
7 pi$ 10
8 ppi$ 9
9 sippi$ 7
10 sissippi$ 4
11 ssippi$ 6
12 ssissippi$ 3

4 / 24

Suffix trees

Nonetheless, if a suffix array is augmented with the tree topology
and the longest common prefix (LCP) array, then one retrieves the
whole functionality of a suffix tree.
All these data structures can be compressed, thus leading to
compressed suffix trees.

i Sorted suffixes LCP[i]

1 $
2 i$ 0
3 ippi$ 1
4 issippi$ 1
5 ississippi$ 4
6 mississippi$ 0
7 pi$ 0
8 ppi$ 1
9 sippi$ 0
10 sissippi$ 2
11 ssippi$ 1
12 ssissippi$ 3

5 / 24

From strings to graphs

In the meanwhile, the notion of suffix array has been generalized from
strings to trees4, Wheeler graphs5 and arbitrary labeled graphs 6.
Since the functionality of a suffix tree can be simulated starting from
a suffix array, the natural question is whether it is possible to design
suffix trees of graphs.

2

5 6 7 8 9

3 4

10 11 12 13 14

15 16 17 18 19

1start

a a a a a

b b b c c

d d e e e

f

g h
i

l

a

4P. Ferragina, F. Luccio, G. Manzini, S. Muthukrishnan, Structuring labeled trees
for optimal succinctness, and beyond, FOCS 2005.

5T. Gagie, G. Manzini, J. Sirén, Wheeler graphs: A framework for BWT-based data
structures, TCS 2017.

6N. Cotumaccio, N. Prezza, On indexing and compressing finite automata, SODA
2021.

6 / 24

Suffix trees of graphs

In the absence of suffix trees for graphs, some authors have proposed
alternative approaches (such as the direct product of graphs), but
none of them provides the same flexibility and generality of suffix
trees.
Suffix trees of strings were designed well before the modern
development of the data compression field, and the invention of
suffix trees of graphs, while elicited by the research on suffix arrays,
would have an impact which would go far beyond the applications to
compression.
At the same time, the journey leading to suffix trees of graphs is
expected to provide a deeper insight into data compression concepts
and techniques (entropy, Lempel-Ziv factorization,...) and their
interpretation and application in graph theory.

7 / 24

Our contribution

The main contribution of our paper is to provide a first clear step
towards extending suffix tree functionality to labeled graphs.
Since in order to simulate the suffix tree of a string we need not only
a suffix array, but also an LCP array, we show how to define the LCP
array of a graph.
We actually focus on (deterministic) Wheeler graphs (or equivalently,
automata), because Wheeler graphs best capture the intuition
behind suffix arrays in a graph setting, thus they are expected to be
the crucial class of graphs one should work with.

8 / 24

Our contribution

A classical and useful problem that can be solved using the suffix
tree of a string (and in particular the LCP array of a string) is the
problem of determining the matching statistics of a given pattern
w.r.t the string.
We test our definition of the LCP array for a Wheeler graph by
showing that the LCP array can be effectively and efficiently used to
determine the matching statistics of a given pattern w.r.t the
Wheeler graph, which is the natural generalization of the matching
statistics problem from a string setting to a graph setting.
More precisely, we generalize an algorithm7 for determining matching
statistics from a string setting to a graph setting.

7E. Ohlebusch, S. Gog, A. Kügell, Computing matching statistics and maximal
exact matches on compressed full-text indexes, SPIRE 2010.

9 / 24

Matching statistics of a string π w.r.t a string T

T = mississippi$
π = stpissi

1 ℓ1 = 1, [l1, r1] = [9, 12].
2 ℓ2 = 0, [l2, r2] = [1, 12].
3 ℓ3 = 2, [l3, r3] = [7, 7].
4 ℓ4 = 4, [l4, r4] = [4, 5].
5 ℓ5 = 3, [l5, r5] = [11, 12].
6 ℓ6 = 2, [l6, r6] = [9, 10].
7 ℓ7 = 1, [l7, r7] = [2, 5].

i Sorted suffixes
1 $
2 i$
3 ippi$
4 issippi$
5 ississippi$
6 mississippi$
7 pi$
8 ppi$
9 sippi$
10 sissippi$
11 ssippi$
12 ssissippi$

10 / 24

T = mississippi$, π = stpissi

We start from the end of π, and we repeatedly apply a backward search
step (using the FM-index, which relies on the Burrows-Wheeler transform
of the string).

1 ℓ1 = 1, [l1, r1] = [9, 12].
2 ℓ2 = 0, [l2, r2] = [1, 12].
3 ℓ3 = 2, [l3, r3] = [7, 7].
4 ℓ4 = 4, [l4, r4] = [4, 5].
5 ℓ5 = 3, [l5, r5] = [11, 12].
6 ℓ6 = 2, [l6, r6] = [9, 10].
7 ℓ7 = 1, [l7, r7] = [2, 5].

i Sorted suffixes
1 $
2 i$
3 ippi$
4 issippi$
5 ississippi$
6 mississippi$
7 pi$
8 ppi$
9 sippi$
10 sissippi$
11 ssippi$
12 ssissippi$

11 / 24

T = mississippi$, π = stpissi

π = stpissi

1 ℓ1 = 1, [l1, r1] = [9, 12].
2 ℓ2 = 0, [l2, r2] = [1, 12].
3 ℓ3 = 2, [l3, r3] = [7, 7].
4 ℓ4 = 4, [l4, r4] = [4, 5].
5 ℓ5 = 3, [l5, r5] = [11, 12].
6 ℓ6 = 2, [l6, r6] = [9, 10].
7 ℓ7 = 1, [l7, r7] = [2, 5].

i Sorted suffixes LCP[i] SA[i] BWT [i]

1 $ 12 i
2 i$ 0 11 p
3 ippi$ 1 8 s
4 issippi$ 1 5 s
5 ississippi$ 4 2 m
6 mississippi$ 0 1 $
7 pi$ 0 10 p
8 ppi$ 1 9 i
9 sippi$ 0 7 s
10 sissippi$ 2 4 s
11 ssippi$ 1 6 i
12 ssissippi$ 3 3 i

12 / 24

T = mississippi$, π = stpissi

π = stpissi

1 ℓ1 = 1, [l1, r1] = [9, 12].
2 ℓ2 = 0, [l2, r2] = [1, 12].
3 ℓ3 = 2, [l3, r3] = [7, 7].
4 ℓ4 = 4, [l4, r4] = [4, 5].
5 ℓ5 = 3, [l5, r5] = [11, 12].
6 ℓ6 = 2, [l6, r6] = [9, 10].
7 ℓ7 = 1, [l7, r7] = [2, 5].

i Sorted suffixes LCP[i] SA[i] BWT [i]

1 $ 12 i
2 i$ 0 11 p
3 ippi$ 1 8 s
4 issippi$ 1 5 s
5 ississippi$ 4 2 m
6 mississippi$ 0 1 $
7 pi$ 0 10 p
8 ppi$ 1 9 i
9 sippi$ 0 7 s
10 sissippi$ 2 4 s
11 ssippi$ 1 6 i
12 ssissippi$ 3 3 i

13 / 24

T = mississippi$, π = stpissi

π = stpissi

1 ℓ1 = 1, [l1, r1] = [9, 12].
2 ℓ2 = 0, [l2, r2] = [1, 12].
3 ℓ3 = 2, [l3, r3] = [7, 7].
4 ℓ4 = 4, [l4, r4] = [4, 5].
5 ℓ5 = 3, [l5, r5] = [11, 12].
6 ℓ6 = 2, [l6, r6] = [9, 10].
7 ℓ7 = 1, [l7, r7] = [2, 5].

i Sorted suffixes LCP[i] SA[i] BWT [i]

1 $ 12 i
2 i$ 0 11 p
3 ippi$ 1 8 s
4 issippi$ 1 5 s
5 ississippi$ 4 2 m
6 mississippi$ 0 1 $
7 pi$ 0 10 p
8 ppi$ 1 9 i
9 sippi$ 0 7 s
10 sissippi$ 2 4 s
11 ssippi$ 1 6 i
12 ssissippi$ 3 3 i

14 / 24

T = mississippi$, π = stpissi

π = stpissi

1 ℓ1 = 1, [l1, r1] = [9, 12].
2 ℓ2 = 0, [l2, r2] = [1, 12].
3 ℓ3 = 2, [l3, r3] = [7, 7].
4 ℓ4 = 4, [l4, r4] = [4, 5].
5 ℓ5 = 3, [l5, r5] = [11, 12].
6 ℓ6 = 2, [l6, r6] = [9, 10].
7 ℓ7 = 1, [l7, r7] = [2, 5].

i Sorted suffixes LCP[i] SA[i] BWT [i]

1 $ 12 i
2 i$ 0 11 p
3 ippi$ 1 8 s
4 issippi$ 1 5 s
5 ississippi$ 4 2 m
6 mississippi$ 0 1 $
7 pi$ 0 10 p
8 ppi$ 1 9 i
9 sippi$ 0 7 s
10 sissippi$ 2 4 s
11 ssippi$ 1 6 i
12 ssissippi$ 3 3 i

15 / 24

T = mississippi$, π = stpissi

π = stpissi

1 ℓ1 = 1, [l1, r1] = [9, 12].
2 ℓ2 = 0, [l2, r2] = [1, 12].
3 ℓ3 = 2, [l3, r3] = [7, 7].
4 ℓ4 = 4, [l4, r4] = [4, 5].
5 ℓ5 = 3, [l5, r5] = [11, 12].
6 ℓ6 = 2, [l6, r6] = [9, 10].
7 ℓ7 = 1, [l7, r7] = [2, 5].

i Sorted suffixes LCP[i] SA[i] BWT [i]

1 $ 12 i
2 i$ 0 11 p
3 ippi$ 1 8 s
4 issippi$ 1 5 s
5 ississippi$ 4 2 m
6 mississippi$ 0 1 $
7 pi$ 0 10 p
8 ppi$ 1 9 i
9 sippi$ 0 7 s
10 sissippi$ 2 4 s
11 ssippi$ 1 6 i
12 ssissippi$ 3 3 i

The backward search fails: "pissi" does not occur in T = mississippi$.

16 / 24

T = mississippi$, π = stpissi

We use the LCP array to determine the longest prefix of "issi" with more
occurrences than "issi" in T .

π = stpissi

1 ℓ1 = 1, [l1, r1] = [9, 12].
2 ℓ2 = 0, [l2, r2] = [1, 12].
3 ℓ3 = 2, [l3, r3] = [7, 7].
4 ℓ4 = 4, [l4, r4] = [4, 5].
5 ℓ5 = 3, [l5, r5] = [11, 12].
6 ℓ6 = 2, [l6, r6] = [9, 10].
7 ℓ7 = 1, [l7, r7] = [2, 5].

i Sorted suffixes LCP[i] SA[i] BWT [i]

1 $ 12 i
2 i$ 0 11 p
3 ippi$ 1 8 s
4 issippi$ 1 5 s
5 ississippi$ 4 2 m
6 mississippi$ 0 1 $
7 pi$ 0 10 p
8 ppi$ 1 9 i
9 sippi$ 0 7 s
10 sissippi$ 2 4 s
11 ssippi$ 1 6 i
12 ssissippi$ 3 3 i

The desired prefix is the one of length max{1, 0} = 1, that is, "i".

17 / 24

T = mississippi$, π = stpissi

We now extend8 the interval [4, 5] (suffixes starting with "issi") to [2, 5]
(suffixes starting with "i").

π = stpi��ZZssi

1 ℓ1 = 1, [l1, r1] = [9, 12].
2 ℓ2 = 0, [l2, r2] = [1, 12].
3 ℓ3 = 2, [l3, r3] = [7, 7].
4 ℓ4 = 4, [l4, r4] = [4, 5].
5 ℓ5 = 3, [l5, r5] = [11, 12].
6 ℓ6 = 2, [l6, r6] = [9, 10].
7 ℓ7 = 1, [l7, r7] = [2, 5].

i Sorted suffixes LCP[i] SA[i] BWT [i]

1 $ 12 i
2 i$ 0 11 p
3 ippi$ 1 8 s
4 issippi$ 1 5 s
5 ississippi$ 4 2 m
6 mississippi$ 0 1 $
7 pi$ 0 10 p
8 ppi$ 1 9 i
9 sippi$ 0 7 s
10 sissippi$ 2 4 s
11 ssippi$ 1 6 i
12 ssissippi$ 3 3 i

8There exists a data structure efficiently supporting such an extension.
18 / 24

T = mississippi$, π = stpissi

We try again to perform a backward search step.

π = stpi��ZZssi

1 ℓ1 = 1, [l1, r1] = [9, 12].
2 ℓ2 = 0, [l2, r2] = [1, 12].
3 ℓ3 = 2, [l3, r3] = [7, 7].
4 ℓ4 = 4, [l4, r4] = [4, 5].
5 ℓ5 = 3, [l5, r5] = [11, 12].
6 ℓ6 = 2, [l6, r6] = [9, 10].
7 ℓ7 = 1, [l7, r7] = [2, 5].

i Sorted suffixes LCP[i] SA[i] BWT [i]

1 $ 12 i
2 i$ 0 11 p
3 ippi$ 1 8 s
4 issippi$ 1 5 s
5 ississippi$ 4 2 m
6 mississippi$ 0 1 $
7 pi$ 0 10 p
8 ppi$ 1 9 i
9 sippi$ 0 7 s
10 sissippi$ 2 4 s
11 ssippi$ 1 6 i
12 ssissippi$ 3 3 i

This time the backward search step is successful, and we go on with the
algorithm.

19 / 24

Wheeler graphs

Wheeler DFAs have a total order on the set of states.
The set T (π) of all states reached by a pattern π is always an
interval.
Intuively, the ordering plays the role of the suffix array.

T (e) = [12, 14]

T (ca) = [3, 4]

T (dba) = [2, 3].

2

5 6 7 8 9

3 4

10 11 12 13 14

15 16 17 18 19

1start

a a a a a

b b b c c

d d e e e

f

g h
i

l

a

20 / 24

Matching statistics of a string π w.r.t a Wheeler DFA A

A = the Wheeler DFA in the figure
π = caa

1 ℓ1 = 1, [l1, r1] = [8, 9].
2 ℓ2 = 2, [l1, r1] = [3, 4].
3 ℓ3 = 2, [l1, r1] = [2, 2].

2

5 6 7 8 9

3 4

10 11 12 13 14

15 16 17 18 19

1start

a a a a a

b b b c c

d d e e e

f

g h
i

l

a

The definition is symmetrical for historical reasons.

21 / 24

LCP array of a Wheeler DFA

Since in the algorithm on strings we had an LCP array for
T = mississippi$, now we need to somehow define an LCP array for
the Wheeler DFA A.
Even though there may be infinitely many strings reaching a state,
we show that it suffices to consider the minimum and maximum such
strings.

State i Minima and maxima LCP[i]

1
1 ######. . .
2 ######. . . ∞

2
3 aaaaaa. . . 0
4 abdf##. . . 1

3
5 abdg##. . . 3
6 acei##. . . 1

4
7 acel##. . . 3
8 acel##. . . ∞

.

2

5 6 7 8 9

3 4

10 11 12 13 14

15 16 17 18 19

1start

a a a a a

b b b c c

d d e e e

f

g h
i

l

a

#
22 / 24

It is not that easy...

Analogously to the algorithm on strings, given a string π, we will
sometimes need to determine the longest suffix π′ of π reaching
more states than π.
If T (π) = [r , s], we can determine π′ by the following formula:

|π′| = max
{

min{lcp(maxr−1,minr),lcp(minr , π
R)},min{lcp(πR

,maxs),lcp(maxs ,mins+1)}
}
.

Orange values are stored in the LCP array (just like in the algorithm
on strings).
Blue values were not needed in the algorithm on strings, but they are
now needed because some strings reaching T (π) may not have π as
a suffix. We maintain the blue values, and we show that they can be
efficiently updated during the algorithm.

23 / 24

Computing Matching Statistics on Wheeler DFAs

Alessio Conte1 Nicola Cotumaccio2,3 Travis Gagie3

Giovanni Manzini1 Nicola Prezza4 Marinella Sciortino5

1University of Pisa, Italy

2GSSI, L’Aquila, Italy

3Dalhousie University, Halifax, Canada

4Ca’ Foscari University, Venice, Italy

5University of Palermo, Italy

24 / 24

