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MOTIVATION



Background
In-loop filtering shows interesting coding efficiency gains:

AV1 Loop Restoration: 2.31% (Random Access)

VVC Adaptive Loop Filter: 4.35% (Random Access)

Residual Convolutional Neural Networks (CNNs) can provide additional 
gains beyond the approaches listed above (> 5%)

Unfortunately, these CNN gains are accompanied by significant increase 
in the number of Multiply-Accumulate (MAC) operations. Here, we focus 
on reducing MAC per pixel count.



MULTISCALE CNN 
APPROACH



Introduction
In this work we:

Split the network into full resolution and one-half resolution channels

Investigate different approaches for re-combining the full resolution and 
one-half resolution channels, and

Use 1x1 convolutional layers to manage spatial support



Placement and input
We place MSCCN at the start of the reconstruction loop

Inputs to MSCNN are luma samples and transform residue
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Design features to improve 
coding efficiency
The prediction/correction samples values output by MSCNN are scaled 
using scaling factors 1.0, or 0.75, or 0.50

Application of MSCNN is controlled at block level. Block sizes can be 
16x16, 32x32, 64x64 or 128x128

Models are selected based on slice type (intra/inter) and QP, where QP is:
QP = (base qindex) - 24 * (source bit depth - 8)



Design features to improve 
coding efficiency (contd.)
For intra slices, we use one model for each QP range listed below:

[0…100], [101…124], [125…149], [150…174], [175…200], 
[200…255]

Similarly for inter slices, we use one model for each QP range listed 
below:

[0…110], [111…135], [136…160], [161…185], [185…210], 
[211…255]

Since coding artifacts depend on QP and slice type 



TRAINING AND 
EVALUATION 

SETUP



Training Setup
Dataset

Intra: DIV2K dataset
Inter: BVI_DVC dataset

Patch Size: 256x256

Batch Size: 1

Model Details:
6 models, one for each QP range
2 model groups.  One group for intra, one group for inter.



Training Setup (contd.)
Learning rate:

Intra: 10-5 for first 90% of epochs, 10-6 for remaining epochs
Inter: 10-6 for first 90% of epochs, 10-7 for remaining epochs

Model initialization:
Intra: Random
Inter: Two pass training. First pass uses intra models for initialization. 
Second pass uses inter models derived in first pass for initialization.



Training Setup (contd.)
Epoch count:

1760 (for intra), 160 (for inter)

Evaluation dataset:
26 pictures from video resolution classes A2 and A3 of AOMedia
Common Test Conditions (CTC)

Training loss:
Mean Square Error (MSE)



Training/Evaluation data 
generation
Training and evaluation data is generated by running AOMedia Common 
Test Conditions (CTC): All Intra and Random Access configurations
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EXPERIMENTAL 
RESULTS



Testing
AOMedia Common Test Conditions v3.0

Intra [30 frames, 6 QPs]
Random Access [130 frames, 6 QPs]
Class A sequences

Reference (Anchor): AVM research-v3.0.0
https://gitlab.com/AOMediaCodec/avm/-/tree/research-v3.0.0

Performance metric
Bjøntegaard Delta Bitrate

ø

https://gitlab.com/AOMediaCodec/avm/-/tree/research-v3.0.0


Results

All Intra: -6.4% 
Random Access: -6.3%

Class
Intra (PSNR BD Rate) Random Access (PSNR BD Rate)

Y U V YUV Y U V YUV

A1 (4K) -7.40% 4.13% 4.76% -6.04% -6.74% 7.52% 7.67% -5.13%

A2 (2K) -7.13% 3.06% 3.53% -6.16% -6.89% 4.71% 5.12% -5.85%

A3 (720p) -8.90% 3.12% 3.23% -7.82% -8.38% 3.81% 4.26% -7.23%

A4 (360p) -6.67% 3.79% 4.16% -5.88% -7.14% 2.91% 3.27% -6.35%

A5 (270p) -6.93% 2.61% 3.84% -6.09% -7.72% 0.62% 2.31% -6.93%

Average -7.41% 3.34% 3.90% -6.40% -7.38% 3.91% 4.53% -6.30%



Class
Intra (BD Rate) Random Access (BD Rate)

VMAF Y nVMAF Y VMAF Y nVMAF Y

A1 (4K) -13.43% -12.54% -9.02% -8.65%

A2 (2K) -11.95% -11.12% -9.62% -8.71%

A3 (720p) -12.57% -11.96% -10.11% -9.00%

A4 (360p) -11.42% -10.49% -8.15% -7.50%

A5 (270p) -13.98% -12.76% -9.91% -9.11%

Average -12.67% -11.77% -9.36% -8.59%

Results (contd.)

The VMAF gains are higher!



Input Output

Visual comparison of input-
output of MSCNN

In example above, MSCNN removes ringing artifacts



ABLATION STUDY



Aspects studied
We investigate:

Impact of multiscale architecture
Impact of using residual blocks after merging scales

Impact of using 1x1 convolution in one-half resolution processing path to control spatial support

Metrics:
Coding gain: Intra YUV BD bitrate of class A3, A4, A5 test sequences
Complexity: MACs per pixel, Spatial Extent

ø



Significantly larger MACs/pixel

Remove multiscale 
processing

Full resolution processing only
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Complexity-Coding performance of MSCNN
𝑆!, 𝑆" Parameter 

count
MACs/pixel Spatial 

Extent
YUV BD Rate

(32, 96) 2,073,601 720,752 57x57 -6.60%

Complexity-Coding performance of full-resolution processing
Parameter 

count
MACs/pixel Spatial Extent YUV BD Rate

3,594,113 3,590,528 35×35 -6.83%



Removing residual block 
after merging scales

Higher gains for similar MACs/pixel

No residual block after merging scales
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Complexity-coding performance when using convolution to merge scales
𝑆!, 𝑆" Parameter 

count
MACs/pixel Spatial 

Extent
YUV BD Rate

(64, 64) 1,800,065 1,123,712 71×71 -6.32%
(32, 96) 2,248,577 731,264 71×71 -5.69%

(16, 112) 2,809,217 745,280 71×71 -5.07%

Complexity-coding efficiency trade-off when using residual block to merge scales
𝑆!, 𝑆" Parameter 

count
MACs/pixel Spatial Extent YUV BD Rate

(64, 64) 1,824,641 1,157,504 71×71 -6.78%
(32, 96) 2,267,009 770,432 71×71 -6.57%

(16, 112) 2,819,969 784,256 71×71 -6.45%



Using 1x1 convolution to 
manage spatial extent

Lower spatial extent, Lower MAC

Complexity-coding performance when converting ResBlock3a to ResBlock3b into 
ResBlock1 in one-half resolution processing path

𝑆!, 𝑆" (a, b) Parameter 
count

MACs/Pixel Spatial 
Extent

YUV BD 
Rate

(32, 96) (6, 7) 1,824,641 659,840 63×63 -6.60%
(32, 96) (5, 7) 1,603,457 604,544 55×55 -6.50%
(32, 96) (4, 7) 1,382,273 549,248 47×47 -6.49%
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Summary
Average YUV BD Bitrate (class A sequences):

All Intra: -6.4% 
Random Access: -6.3%

In this work we process channels at full and one-half resolution to 
reduce MAC. 1x1 convolutional layers are used to manage spatial 
extent. Residual block is used to re-combine the two resolutions for 
improved coding efficiency

Compared to a similar network that only operates at the high resolution, 
we observe the multiscale approach reduces complexity by 5.4×
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