

Improving Compression Efficiency Using an Encoder-Aware Motion Compensated Temporal Filter

Rahul Vanam and Sriram Sethuraman

Amazon Prime Video, Seattle, WA, USA

IEEE Data Compression Conference 2023

Introduction to Motion Compensated Temporal Filtering (MCTF)

- MCTF is a pre-processing approach applied on uncompressed video prior to encoding, to improve compression efficiency
- No additionally signaling required for MCTF in the bitstream players can play MCTF processed streams
- Prior work:
 - MCTF is a mature technology earliest work in 1980s for pre-processing a DPCM-based video encoder [1]!
 - MCTF also used in more recent encoders: HEVC [2], VVC [3], and AV1 [5]

Introduction to Motion Compensated Temporal Filtering (MCTF)

- MCTF aligns blocks in a frame with matching blocks in neighboring frames
- These aligned reconstructed blocks can better predict neighboring blocks during inter-picture prediction coding
 - Reduces the inter-prediction residual energy
 - Fewer bits required to encode after quantization

Frame "t"

Frame "t+1"

prime video

Proposed Encoder-Aware MCTF (EA-MCTF)

- EA-MCTF integrated into the x265 encoder [7] (open-source HEVC encoder)
 - Classical MCTF operates outside the encoder
- EA-MCTF can access internal encoder parameters for adapting filter on a block-basis
 - Internal encoder parameters include block-level QPs, slice types, CU propagation cost
- EA-MCTF consists of three stages
 - Hierarchical motion estimation on input frames, deriving filter parameters, and temporal filtering

prime video

Results

prime video

- x265 encoder settings: GOP length = 16, slow preset
- HM-MCTF: Integrated MCTF from HEVC reference software into x265, and modified to use block QPs
- Ten 1080p SDR 8bit test sequences from [8] and [9]
- Performance of EA-MCTF and HM-MCTF over no MCTF ("NO-MCTF") encodes
 - Average BD-rate gain: -12.4% for EA-MCTF vs. -1.9% gain for HM-MCTF. HM-MCTF yields loss on many of the clips
- Encoding with peak bitrate constraint of 9Mbps
 - Encoder bits usage saturates to peak bitrate for complex clips
 - EA-MCTF yields 0.26 average VMAF improvement over NO-MCTF, while HM-MCTF yields no VMAF improvement
- EA-MCTF includes features that trade-off well between speed and performance
 - Average encoding time overhead: 17% for EA-MCTF, 784% for HM-MCTF

Table 1. VMAF BD-rates using the NO-MCTF encodes as the anchor. (Negative value is gain)

1080p sequences	HM-MCTF	EA-MCTF
pedestrian_area	22.30%	-8.30%
rush_hour	10.70%	-8.90%
station2	-49.70%	-50.60%
sunflower	-3.30%	-11.30%
ducks_take_off	9.70%	-1.80%
crowd_run	-2.70%	-7.80%
BasketballDrive	7.80%	-5.70%
Cactus	-14.90%	-18.10%
ArenaOfValor	3.80%	-2.10%
MarketPlace	-2.60%	-9.40%
Average	-1.90%	-12.40%

CRF_{MCTF} = {19, 19.5, 20, 20.5} CRF_{NO-MCTF} = {20, 20.5, 21, 21.5}

References

- 1. E. Dubois and S. Sabri, "Noise Reduction in Image Sequences Using Motion-Compensated Temporal Filtering," *IEEE Transactions on Communications*, vol. 32, no. 7, pp. 826-831, July 1984.
- 2. P. Wennersten, J. Östrand and R. Sjöberg, "Encoder only GOP based temporal filter," JCTVC AI0023, Geneva, March 2019.
- 3. P. Wennersten, R. Sjöberg and J. Enhorn, "AHG10: Encoder only GOP based temporal filter," JVET 00549, Gothenburg, July 2019.
- 4. J. Enhorn, R. Sjöberg and P. Wennersten, "A Temporal Pre-Filter For Video Coding Based On Bilateral Filtering," *IEEE International Conference on Image Processing (ICIP)*, pp. 1161-1165, 2020.
- 5. C. Chen, J. Han and Y. Xu, "A Non-local Mean Temporal Filter for Video Compression," *IEEE International Conference on Image Processing (ICIP)*, pp. 1142-1146, 2020.
- 6. HEVC reference encoder software, URL: <u>https://vcgit.hhi.fraunhofer.de/jvet/HM</u>.
- 7. x265 software encoder, URL: <u>https://github.com/videolan/x265</u>.
- 8. derf's collection, URL: <u>https://media.xiph.org/video/derf/</u>.
- 9. JVET CTC test sequences, URL: <u>ftp://ftp.ient.rwth-aachen.de</u>.
- 10. VMAF, URL: <u>https://github.com/Netflix/vmaf</u>.

