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Abstract

In this work, we estimate rate-distortion via energy-based models (EBMs). We begin by
providing a framework for estimating rate-distortion with neural networks. We then instan-
tiate the framework with EBMs and provide Discriminative-Blahut-Arimoto. Our empirical
results show that our estimates agree with closed-form expressions and known bounds.

1 Introduction

Our main goal is to estimate rate-distortion via energy-based models (EBMs). Source
coding [1] is a technique that represents a source with fewer bits and less-than-perfect
fidelity. Rate-distortion presents the theoretical limits of source coding. It is impor-
tant to compute rate-distortion and find rate-distortion approaching posteriors. This
is because they provide insights to help design good source codes. Classical numeri-
cal algorithms such as Blahut-Arimoto (BA) [2, 3] efficiently calculate rate-distortion
when sources are independent and identically distributed.

EBMs have a long history in physics, statistics, and machine learning [4]. EBMs
define Boltzmann distributions, which include rate-distortions approaching posteriors,
so EBMs can be used to represent rate-distortions approaching posteriors and to
estimate rate-distortions.

In this paper, we show how to estimate rate-distortion with EBMs. We provide
a paradigm for using neural networks to estimate rate-distortion. The framework is
then instantiated using EBMs, and Discriminative-Blahut-Arimoto is provided. Our
empirical estimates agree with closed-form expressions and known bounds.

2 Background

2.1 Rate-Distortion

Given a source distribution p(y) and a distortion constraint d ∈ R+ associated with
a distortion metric ρ(·), rate-distortion is defined as

R(d) := min
{p(x),p(x|y):E[ρ(x,y)]≤d}

I(x;y), (1)

where I(x;y) denotes the mutual information and E[·] is the expectation operator.
Let denote

LRD(p(x), p(x|y)) := I(x;y) + βE[ρ(x,y)], (2)



where β controls the trade-off between rate (I(x;y)) and distortion (E[ρ(x,y)]).
Let denote optimized p(x|y) and p(x) achieving R(d) by p∗RD(x|y) and p∗RD(x).

That is,

p∗RD(x|y) := arg min
{p(x|y):y,x ∼p(y)p(x|y),E[ρ(x,y)]≤d}

I(x;y), p∗RD(x) =

∫
p(y)p∗RD(x|y)dy. (3)

p∗RD(x|y) and p∗RD(x) are characterized by [1, chapter 10, pp. 330]:

p∗RD(x|y) =
1

Zβ(y)
p∗RD(x) exp[−βρ(y,x)], Zβ,RD(y) :=

∫
p∗RD(x) exp[−βρ(x,y)]dx.

(4)

2.2 Energy-Based Models

Let Eφ(x) ∈ R+ be the energy function represented by a neural network φ given
data x. An energy-based model (EBM) [4] defines Boltzmann distributions:

pφ(x) :=
exp[−Eφ(x)]

Zφ
, (5)

where Zφ :=
∫
Eφ(x)dx denotes the partition function.

Langevin dynamics (LD) describes a sampling approach from pφ(x) using∇x log pφ(x).
Specifically, given a step size λ > 0, a total number of iterations K, and an initial
prior x0 ∼ π(x), it iterates the following

xi := xi−1 − λ∇xi−1
Eφ(xi−1) +

√
2λzi, zi ∼ N (0, I). (6)

Under some regularity criteria, the distribution of {xK} will be close to pφ(x) when
λ is sufficiently small and K is sufficiently large [5, 6].

3 Minimax Game of Rate-Distortion

3.1 Rate-Distortion-Generative-Network

We first formulate (2) as a minimax game. To do so, we relax I(x;y) by using the
variational lower bound given by Nguyen et al. [7, Equation 8]. That is,

I(x;y) ≥ sup
D∈D

Ex,y∼p(x,y)[D(x,y)]− Ex,y∼p(x)p(y)[exp(D(x,y)− 1)], (7)

where D is a function class D : (x,y)→ R+ 1.
Let us denote

LMI(D) := Ex,y∼p(x,y)[D(x,y)]− Ex,y∼p(x)p(y)[exp(D (x,y)− 1)], (8)

1Based on [7, Equation 8], I(x;y) ≥ supF∈F Ex,y∼p(x,y)[logF (x,y)]−Ex,y∼p(x)p(y)[F (x,y)] + 1,
where F is a class of functions F : (x,y)→ R+. (7) is derived by setting logF := D − 1.



and

L′RD[p(x), p(x|y), D] := Ex,y∼p(x,y)[D(x,y)]− Ex,y∼p(x)p(y)[exp(D (x,y)− 1)]

+ βE[ρ(x,y)]. (9)

As a result, (2) is formulated as the following minimax game:

min
p(x),p(x|y)

max
D
L′RD[p(x), p(x|y), D], (10)

where min over p(x), p(x|y) is due to the definition of rate-distortion, and max over
D is to maximize lower bound of I(x;y), i.e., (7).

Due to the fact that deep neural networks are universal approximators [8], we
introduce three neural networks to model p(x|y), p(x), and D: an encoder neural
network parameterized by θ to model p(x|y), a generator neural network parame-
terized by φ to model p(x), and one discriminative network parameterized by ω to
model D. As a result, (10) is:

min
φ,θ

max
ω
L′RD(φ, θ, ω). (11)

That is, 1) φ, θ, and ω constitute a minimax game with the objective (11): ω is
trained to maximize LMI(ω) with fixed φ and θ, and while φ and θ are trained to
minimize L′RD(φ, θ, ω) with fixed ω; and 2) φ, θ, and ω define a generative model and
a conditional generative model, and we call it Rate-Distortion-Generative-Network
(RD-GEN). Fig. 1a summarizes this.

3.1.1 Special case: β =∞

When β = ∞, p∗RD(x|y) = 1y=x (i.e., p∗RD(x|y) = 1 if y = x otherwise 0), d = 0,
p∗RD(x) and p(y) are identical, and Zβ,RD(y) = ln p(y) based on (4). Furthermore, as
p∗RD(x|y) = 1y=x, the encoder is an identity function, thus skipped for optimization,
and (9) degenerates to the objective of f-GAN [9]. Fig. 1b summarizes this.

3.2 Optimal discriminator

Lemma 1. For given x and y, the optimal discriminator D∗(x,y) according to (9),
i.e., D∗(x,y) = arg maxω L′RD[p∗RD(x|y), p∗RD(x), ω], is given by

D∗(x,y) = 1− βρ(x,y)− lnZβ,RD(y). (12)

The proof is deferred to Appendix A. That is, for a given y, the encoder and
generator’s task is to return a reconstruction of y, i.e., x, satisfying the average
distortion constraint; for a given y and its reconstruction x, the optimal discriminator
returns a soft score, i.e., 1− βρ(x,y)− lnZβ,RD(y).

Corollary 2. When β = ∞, then p∗RD(x|y) = 1y=x, p∗RD(x) and p(y) are identical,
and D∗(x,y) = 1− ln p(y).

That is, the generator’s task is to return a sample x; given x and y, the optimal
discriminator returns a hard score, i.e., D∗(x,y) = 1− ln p(y) if x ∼ p(y), otherwise
D∗(x,y) =∞.
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Figure 1: Comparison between RD-GEN and GAN. Given p(y), RD-GEN is to learn
p∗RD(x) and p∗RD(x|y) achieving R(d). When d = 0 and the encoder is optional,
RD-GEN degenerates to GAN.

4 Rate Distortion Via EBM

In this part, we implement RD-GEN with EBMs. There are two advantages with
EBMs: first it is possible to represent both p∗RD(x) and p∗RD(x|y) by one EBM φ, i.e.,
Section 4.1; secondly the training of EBMs with the objective L′RD(φ, θ, ω) can be
accomplished in a manner similar to Blahut-Arimoto, i.e., Section 4.2.

4.1 Represent p∗RD(x) and p∗RD(x|y) by one EBM

Lemma 3. Suppose p∗RD(x) is represented by one EBM, i.e., p∗RD(x) = exp [−Eφ(x)]/Zx,
then p∗RD(x|y) can be represented by a related EBM, i.e., p∗RD(x|y = exp{−[Eφ(x) +
βρ(y,x)]}/Zy|x, where Zy|x =

∫
exp{−[Eφ(y) + βρ(y,x)]}dx.

The proof is in Appendix A. That is, we only need to train one EBM as the
generator instead of two neural networks for the encoder and the generator separately.

4.2 Discriminative-Blahut-Arimoto Algorithm

Discriminative-Blahut-Arimoto (DBA) is presented in Algorithm 1, where ωt, φt, and
Rt(d) denote the trained discriminator, the trained EBM, and the estimated rate
distortion at the tth-iteration, respectively.

More specifically, the algorithm first initializes ωt, φt randomly, i.e., Line 2; After
that the algorithm alternatively loops between two steps until both ωt, φt converge:
optimize ωt based on (8) i.e., Line 7, where x ∼ pφt(x|y) (pφt(x|y) is the same as (3)
except p∗RD(x) is replaced by pφk(x)) and x′ ∼ pφt(x) are obtained via LD, i.e., Line
5; optimize φt based on (9), i.e., Line 8.

That is, an EBM is trained to model p∗RD(x) and thus p∗RD(x|y) due to Lemma 3
and a discriminator is trained to estimate mutual information.



Algorithm 1 DBA
1: procedure DBA(p(y), β, ρ(·))
2: t← 0 and initialize ωt, φt arbitrarily
3: while not converged do
4: for y ∼ p(y) do
5: sample x ∼ pφt (x|y), x′ ∼ pφt (x) via LD

6: feed y,x,x′ to ωt and approximate Rt(d)
7: update ωt by stochastic gradient ascent of LMI

8: update φt by stochastic gradient descent of L′RD
9: end for
10: t← t+ 1
11: end while
12: return ωt, φt and Rt(d)
13: end procedure

4.3 Theoretical analysis

Theorem 1. 1. Algorithm 1 converges, that is,

LRD(φt) ≥ LRD(φt+1);

2. Assume φ and ω have enough capacity to represent p∗RD(x|y) andD∗(x,y), LRD(φt)→
min{p(x),p(x|y)} LRD(p(y), p(y|x)) as t→∞.

The proof is in Appendix A. Theorem 1 states that (pφt(x), pφt(x|y)) learned by
DBA converges to rate-distortion posterior (p∗RD(x), p∗RD(x|y)) when t→∞.

5 Experiments

We compare our estimated rate distortion functions with theoretical predictions for
rate distortion functions with closed-form expressions, i.e., Section 5.1; for rate dis-
tortion functions with known bounds, we compare with both theoretical bounds and
prior best empirical results [10], i.e., Section 5.2. Appendix B contains the experi-
ment’s specifics.

5.1 Estimation of rate distortion with closed-form expressions

We first consider a binary symmetric source (BSS) with Hamming distortion. Its rate
distortion is given by [1, Theorem 10.3.1], i.e.,

R(d) =

{
1−H(d) if 0 ≤ d ≤ 1

2
,

0 if d > 1
2
,

where H(·) is the binary entropy function.
We next consider a Gaussian sourceN (0, σ2) with L2 distortion. Its rate distortion

is given by [1, Theorem 10.3.2], i.e.,

R(d) =

{
1
2

log σ2

d
if 0 ≤ d ≤ σ2,

0 if d > σ2.



We finally consider a Laplacian source, i.e., p(x, λ) = λ
2

exp(−λ‖x‖1), with L1-
norm distortion. Its rate distortion is given by [11], i.e.,

R(d) =

{
− log(λd) if 0 ≤ d ≤ 1

λ
,

0 if d > 1
λ
.

We present approximation results of R(d) in Fig. 2. Comparing with theoretical
results, DBA approximates theoretical results closely.

5.2 Estimation of rate distortion with known bounds

5.2.1 Binary Symmetric Markov Source and L1-norm distortion

We now consider a long-standing problem ([12–14]) in information theory: determi-
nation of the rate distortion function for a binary symmetric Markov source (BSMS).
Let {xk, k = 1, 2, · · · , n} be a binary symmetric Markov source with transition pa-
rameter q. Mathematically, {xk} is a 2-state Markov chain with Pr(x1 = 0) =
Pr(x1 = 1) = 1/2 and a probability transition matrix

( 0 1

0 1− q q
1 q 1− q

)
.

For simplicity, we assume q ≤ 1/2. Computation of R(d) of BSMS has been investi-
gated by Gray in [13], where only bounds were provided.

In Fig. 3a, we show the approximation results of R(d) of BSMS (p = 0.25) with
L1 distance. We present empirical lower bounds based on [15] and the best empirical
results [10] for reference. DBA aligns with theoretical bounds and approximates
better than [10] when compared to previous best empirical results.

5.2.2 Binary Asymmetric Markov Source with L1-norm Distortion

Binary Asymmetric Markov Source (BAMS) {xk, k = 1, 2, · · · , n} is a binary Markov
source with transition probabilities between the two states p and q. Mathematically,
{xk} is a 2-state Markov chain with Pr(x1 = 0) = Pr(x1 = 1) = 1/2 and a probability
transition matrix ( 0 1

0 1− q q
1 p 1− p

)
.

For simplicity, assume that p < q ≤ 1/2. R(d) of BAMS source has not been solved
yet except lower bounds [13].

In Fig. 3b, we shown the approximation results of R(d) of BAMS (p = 0.25, q =
0.3) with L1-norm. Similarly, based on [15] and best empirical results [10], we give
empirical lower bounds. In most cases, the empirical bounds from [15] are less strin-
gent than theoretical bounds. DBA aligns with theoretical bounds and approximates
better than [10] when compared to previous best empirical results.
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Figure 2: Estimations of rate distortion with closed-form expressions via RD-EBM.
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Figure 3: Estimations of rate distortion without closed-form expressions via RD-EBM.

5.3 Estimation of rate distortion with unknown bounds

This part focuses on rate distortion of a Laplacian source with L2-norm distortion,
which has unknown theoretical bounds. In Fig. 3c, we approximate it with DBA and
compare it to experimental upper and lower bounds based on [15]. DBA aligns with
experiment bounds and is hence useful for investigating general rate distortion with
unknown bounds.

6 Related Work

Recently, there has been a surge in interest in deep learning applications for rate-
distortion estimation [10, 15–18]. Our study focuses on rate-distortion estimations
and differs from previous work [10, 15–18] in that we theoretically investigate the
connection between rate-distortion and energy-based models and effectively employ
energy-based models to estimate various rate-distortion functions.



7 Conclusions

In this work, we estimate rate distortion using energy-based models (EBMs). The
central idea is to model rate-distortion as a minimax game, which provides a frame-
work for neural networks for estimating rate-distortion. After that, the framework is
then instantiated with EBMs, and DBA is provided to approximate rate-distortion.
Our empirical results show that our estimates agree with closed-form expressions and
known bounds.
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A Appendix

A.1 Proof for Lemma 1

Lemma 4. For given φ, θ, x and y, the optimal discriminator D∗(x,y, φ, θ) according
to (9), i.e., D∗(x,y, φ, θ) = arg maxω L′RD(φ, θ, ω), is given by

D∗(x,y, φ, θ) = ln pφ(x|y)− ln pθ(x) + 1. (13)

Proof. Define µ(x,y) := p(x,y)D(x,y)− p(x)p(y) exp[D(x,y)− 1]
Thus

dµ

dD
= p(x,y)− p(x)p(y) exp[D(x,y)− 1].

By setting the above equation to zero, we obtain (13).

Proof for Lemma 1 The Lemma 1 holds because of Lemma 4 and (4).

A.2 Proof for Lemma 3

Proof.

p∗RD(x|y) =
1

Zβ(y)
p∗RD(x) exp[−βρ(y,x)], (14)

=
p∗RD(x) exp[−βρ(y,x)]∫
p∗RD(x) exp[−βρ(y,x)]dx

, (15)

=

exp[−Eφ(x)]
Zx

exp[−βρ(y,x)]∫ exp[−Eφ(x)]
Zx

exp[−βρ(y,x)]dx
, (16)

=
exp{−[Eφ(x) + βρ(y,x)]}∫
exp{−[Eφ(x) + βρ(y,x)]}dx

, (17)

=
exp{−[Eφ(x) + βρ(y,x)]}

Zy|x
, (18)

where

(14) is based on (4);

(15) is based on (5);

(16) is based on the assumption that p∗RD(x) can be represented by one EBM of the
form (5);

(16) is based on the notation Zy|x =
∫

exp{−[Eφ(y) + βρ(y,x)]}dx.



A.3 Proof for Theorem 1

Proof. 1. The convergence part follows by:

LRD(φt) ≥ max
ω
L′RD(φt, ω), (19)

= L′RD(φt, ωt+1), (20)

≥ min
φ
L′RD(φ, ωt+1), (21)

= LRD(φt+1), (22)

where

(19) is due to (2) or [7, Lemma1];

(20) is due to (10) and the universal assumption on neural networks.

2. The second part follows because {LRD(φt)} is decreasing and bounded, thus {LRD(φt)}
must converge.

B Experimental details

B.1 Architecture and hyperparameters for Section 5.1 and Section 5.3

• Energy-Based Model: 1 → 64 → 64 → 64 → 1 with Sigmoid activation func-
tion;

• Discriminator: 2 → 640 → 640 → 640 → 1 with LeakyReLu activation func-
tion;

• Langevin dynamic: K = 200 and λ = 0.001.

The training epoch is 400, data length is 1, total dataset size is 81920, which
are randomly sampled from a given source distribution, learning rate is 1e−4, and
batch size is 128. For each rate distortion function, we report its mean and standard
deviation over five runs. The experiments are run on a single GPU.

B.2 Architecture and hyperparameters for Section 5.2

• Energy-Based Model: 100 → 640 → 640 → 640 → 1 with Sigmoid activation
function;

• Discriminator: 200 → 640 → 640 → 640 → 1 with LeakyReLu activation
function;

• Langevin dynamic: K = 200 and λ = 0.001.

The training epoch is 400, data length is 100, and total dataset size is 8192.


