
A debanding algorithm for AV2
DCC 2023

Joel Sole Mariana Afonso
jsole@netflix.com mafonso@netflix.com

Video Codecs and Quality
Encoding Technologies

Banding artifacts are annoying.
They are visible even using the latest codecs, even for 10-bit and HDR content.

CAMBI (Contrast-Aware Multiscale Banding Index) is a banding artifact detector
highly correlated with MOS on banded content

● Open-sourced in libvmaf
● Part of the AVM Common Test Conditions

Banding appears in libaom AV1 and AVM encodes
Libaom results for some banding-prone sequences in the AOM Common Test Conditions content

CAMDA is a CAMBI-inspired Debanding Algorithm

Implemented as an inloop and postloop filter in AVM

Debanding in the AVM codec has several benefits

CAMDA allows to provide subjectively better encodes in banding-prone content

Debanding in the codec substantially benefits from having the source information available:

● Better control over where debanding is applied
○ Strength can be tuned to content and application
○ Allows respecting the artistic intent where needed

● Film grain synthesis doesn’t mask banding, but it makes it difficult to apply debanding
● Consistent and controlled application across products

Two implementations: as the last in-loop filter & as the first post-loop filter in AVM

CAMDA is a CAMBI-based Debanding Algorithm

ote: gray-levels stretched for better visibility

Interaction with film grain noise

GlassHalf 1080p @ QP185, AVM 3.1

AVM AVM + CAMDA AVM +
post-processing deband

CAMBI and CAMDA in AVM

● Code available on Gitlab

● Compile & runtime flags: CONFIG_DEBAND & --enable-deband

● Frame-level condition to apply CAMDA:
cambi_enc - cambi_source >= CAMBI_THRESHOLD_BANDING

 cambi_source < CAMBI_SOURCE_THRESHOLD

CAMDA leverages the CAMBI spatial mask and local distribution steps
and adds a dithering step

Applied to the luma component; 4x4 block-based processing

Step 1: spatial mask generation
Pixels likely to contribute to banding are identified by a spatial mask; other pixels are discarded subsequently.

1. Compute zero derivative, i.e., whether the pixel is equal to the right and bottom neighbors
2. For each 4x4 block, count number of zero derivative in a 7x7 window around it
3. Assign the block to the mask if the count is larger than a threshold

Step 2: local distribution computation

Gathering local statistics on a window around a 4x4 block:

p(d) = # pixels in the window with value equals to (current pixel_value + d)

This step gets the p_values in the window for d = -max_diff .. max_diff, where default max_diff=4

Same p_values used for all the pixels in the block

p(0) and the largest (p_max), and the second largest, (p_max2) p(d) with d≠0 are use for dithering

Window size depends on the resolution

Maxim window size: 36x36 around a 4x4 block
16

Dither breaks down the appearance of bands: it is applied to pixels likely to be in large enough bands

area_size_condition = p(0) > (pixels_in_window>>3) && p_max > (pixels_in_window>>4)

Step 3: dithering

AVM with CAMDAAVM

Note: gray-levels stretched for better visibility

Pixel update probability depends on the computed local distribution.

0

1

p(0)

p_max

p_max2

From the local distribution step

Pixel update probability

Dither is added to the 4x4 blocks in the spatial mask

 pr_range = pseudo_random % (p(0) + p_max + p_max2)

 if (p(0) + p_max2 <= pr_range)

 pixel_value = p_max_pixel_value

 else if (p(0) <= pr_range)

 pixel_value = p_max_pixel_value2

else pixel_value is not modified

Performance

BD-CAMBI

BD-CAMBI = -9
Average CAMBI reduction of 9

CAMDA only impacts banding-prone sequences
AOM CTC v3, random access configuration, sorted by BD-CAMBI

CAMDA has almost no encoding but some decoding time impact
(when there is banding)

Average encoding time increase ~0.5%

Average decoding time increase: ~0.5% (in-loop) and ~1.5% (post-loop)

Worst-case in-loop decoding time increases (AVM with and without SIMD):

Sequence BD-CAMBI SIMD Dec Time No SIMD Dec Time

Johnny_1280x720_60 -9.37 71.7% 33.6%

KristenAndSara_1280x720_60 -5.88 58.5% 20.5%

GlassHalf_1920x1080_24 -5.42 35.9% 17.6%

SnowMountain_640x360_2997 -5.55 24.5% 17.6%

Random access % debanded frames Dec Time (SIMD) Dec Time (No SIMD)

In-loop 2.6% 4.3% 0.5%

Post-loop 8.6% 15.2% 1.5%

Up to 42% VMAFba BD-rate gain for the CTC mandatory seqs

no CAMDA

CAMDA

VMAFba: Banding-aware VMAF
“Banding vs. Quality: Perceptual Impact and Objective Assessment”, ICIP2022, L. Krasula et al.

Johnny 1280x720

https://arxiv.org/abs/2202.11038

AVM v3.1 AVM v3.1 with CAMDAote: gray-levels stretched for better visibility

Johnny @ QP160

GlassHalf @ QP110

AVM v3.1 AVM v3.1 with CAMDA

ote: gray-levels stretched for better visibility

HDR10 content @ QP135

A proper CAMDA encoder can improve the banding effects temporal consistency

CAMDA addresses an ongoing and commonly found artifact

● CAMDA shows substantial banding reduction in CAMBI and (anecdotal) subjective improvements in
both in-loop and post-loop cases

● Encoder and decoder-side complexity are very reasonable.

● CAMDA provides AVM with the functionality to remove bands and the encoder flexibility to apply it on a
use-case basis

● On average, the post-loop filter is computationally more complex while having slightly better CAMBI
scores and, possibly, being subjectively better.

● Subjective tests to be conducted to fully assess CAMDA benefits
○ They’ll provide more evidence on the best position of CAMDA in the AVM filter chain

Questions?

Comparisons with

post-processing filters

CAMDA shows large gains vs post-processing debanding

RA config, 8b seqs; gains of CAMDA vs ffmpeg deband as anchor:

PSNRY PSNRU PSNRV VMAF VMAFneg VMAFba SSIM MSSSIM CAMBI
-8.91 -24.11 -25.34 -5.94 -5.06 -2.3 -10.32 -10.64 0.52

AVM 3.1
AVM3.1 + CAMDA

AVM3.1 + pp deband

ote: gray-levels stretched for better visibility

Johnny @ QP160

AVM v3.1 AVM with CAMDA AVM v3.1 +
post-processing deband

