A debanding algorithm for AV2 DCC 2023

Joel Sole jsole@netflix.com Mariana Afonso mafonso@netflix.com

Video Codecs and Quality Encoding Technologies

N Banding artifacts are annoying.

They are visible even using the latest codecs, even for 10-bit and HDR content.

CAMBI (Contrast-Aware Multiscale Banding Index) is a banding artifact detector highly correlated with MOS on banded content

• Open-sourced in libvmaf

N

• Part of the AVM Common Test Conditions

Banding appears in libaom AV1 and AVM encodes

Libaom results for some banding-prone sequences in the AOM Common Test Conditions content

CAMDA is a CAMBI-inspired Debanding Algorithm

Implemented as an inloop and postloop filter in AVM

Debanding in the AVM codec has several benefits

CAMDA allows to provide **subjectively better** encodes in banding-prone content

Debanding in the codec **substantially benefits** from having the **source information available**:

- Better control over where debanding is applied
 - Strength can be tuned to content and application
 - Allows respecting the artistic intent where needed
- Film grain synthesis doesn't mask banding, but it makes it difficult to apply debanding
- Consistent and controlled application across products

CAMDA is a CAMBI-based Debanding Algorithm

Two implementations: as the last **in-loop** filter & as the first **post-loop** filter in **AVM**

Interaction with film grain noise

GlassHalf 1080p @ QP185, AVM 3.1

ote: gray-levels stretched for better visibility

CAMBI and CAMDA in AVM

- Code available on Gitlab
- Compile & runtime flags: CONFIG_DEBAND & --enable-deband
- Frame-level condition to apply CAMDA:

cambi_enc - cambi_source >= CAMBI_THRESHOLD_BANDING
cambi_source < CAMBI_SOURCE_THRESHOLD</pre>

CAMDA leverages the CAMBI spatial mask and local distribution steps and adds a dithering step

Applied to the luma component; 4x4 block-based processing

Step 1: spatial mask generation

Pixels likely to contribute to banding are identified by a spatial mask; other pixels are discarded subsequently.

- 1. Compute zero derivative, i.e., whether the pixel is equal to the right and bottom neighbors
- 2. For each 4x4 block, count number of zero derivative in a 7x7 window around it
- 3. Assign the block to the mask if the count is larger than a threshold

Step 2: local distribution computation

Gathering local statistics on a **window** around a 4x4 block:

p(*d*) = # pixels in the window with value equals to (current pixel_value + d)

Window size depends on the resolution Maxim window size: 36x36 around a 4x4 block

This step gets the *p_values* in the window for *d = -max_diff .. max_diff*, where default max_diff=4 Same p_values used for all the pixels in the block

p(0) and the largest (p_max), and the second largest, (p_max2) p(d) with $d \neq 0$ are use for dithering

Step 3: dithering

N

Dither breaks down the appearance of bands: it is applied to pixels likely to be in large enough bands

 $area_size_condition = p(0) > (pixels_in_window>>3) && p_max > (pixels_in_window>>4)$

AVM with CAMDA

Note: gray-levels stretched for better visibility

Dither is added to the 4x4 blocks in the spatial mask

Pixel update probability depends on the computed local distribution.

pr_range = pseudo_random % (p(0) + p_max + p_max2)
if (p(0) + p_max2 <= pr_range)
 pixel_value = p_max_pixel_value
else if (p(0) <= pr_range)
 pixel_value = p_max_pixel_value2
else pixel value is not modified</pre>

Performance

BD-CAMBI

CAMDA only impacts banding-prone sequences

AOM CTC v3, random access configuration, sorted by BD-CAMBI

Sequence	CAMBI	VMAF _{BA}	VMAF _{neg}	PSNRY	PSNRU	PSNRV	SSIM
Johnny_1280x720_60	-9.37	-41.75	0.36	2.83	0.55	0.54	0.13
Butterfly	-7.83	-21.58	0.07	1	0	0	-0.42
Berlin-Fernsehturm	-7.31	-25.28	0.15	2.01	0.01	0.01	1.73
Zoo de la Barben	-7.19	-23.66	0.04	1.93	0	0	1.33
buildings_02	-6.96	-27.2	0.02	0.24	0	0	-7.19
Shaky_Fireworks_3840x2160_2997	-6.94	-41.34	0.57	8.52	2.71	0.21	4.03
Noise_Animation_1280x720_2398f	-6.78	-40.53	-0.75	2.74	0.93	0.21	1.31
landscape_28	-6.02	-23.78	0.01	0.15	0	0	-3.26
KristenAndSara_1280x720_60	-5.88	-26.52	1.44	3.56	0.43	0.29	4.83
fireworks_01	-5.77	-30.21	0.11	0.3	0	0	-0.04
SnowMountain_640x360_2997	-5.55	-23.16	0.2	0.2	0.08	-0.06	1.94
GlassHalf_1920x1080_24fps_8bit	-5.42	-22.95	-0.95	0.58	0	0.12	-1.27
Fontaine Place Stanislas	-5.27	-21.23	0.06	0.09	0.01	0.01	0.07
Shaky_Baseball_3840x2160_5994f	-4.71	-19.63	-0.46	4.88	0.27	-0.15	11.43
WITCHER3_1920x1080_60_8bit	-3.59	-20.83	0.76	0.79	-0.79	-1.09	0.53
····	129 more s	equences &	t still image	25			
Average in-loop	-0.82	-3.59	0.02	0.25	0.02	0.01	0.13
Average post-loop	-0.85	-3.63	0.02	0.28	0.02	0.01	0.13

CAMDA has almost no encoding but some decoding time impact (when there is banding)

Average **encoding** time increase ~0.5%

Average **decoding** time increase: ~0.5% (in-loop) and ~1.5% (post-loop)

Random access	% debanded frames	Dec Time (SIMD)	Dec Time (No SIMD)
In-loop	2.6%	4.3%	0.5%
Post-loop	8.6%	15.2%	1.5%

Worst-case in-loop decoding time increases (**AVM** with and without SIMD):

Sequence	BD-CAMBI	SIMD Dec Time	No SIMD Dec Time
Johnny_1280x720_60	-9.37	71.7%	33.6%
KristenAndSara_1280x720_60	-5.88	58.5%	20.5%
GlassHalf_1920x1080_24	-5.42	35.9%	17.6%
SnowMountain_640x360_2997	-5.55	24.5%	17.6%

Up to 42% VMAFba BD-rate gain for the CTC mandatory seqs

VMAFba: Banding-aware VMAF

N

"Banding vs. Quality: Perceptual Impact and Objective Assessment", <u>ICIP2022</u>, L. Krasula et al.

Johnny @ QP160

GlassHalf @ QP110

ote: gray-levels stretched for better visibility

AVM v3.1

AVM v3.1 with CAMDA

HDR10 content @ QP135

AVM v3.1

AVM v3.1 with CAMDA

Note: gray-levels stretched for better visibility

A proper CAMDA encoder can improve the banding effects temporal consistency

CAMDA addresses an ongoing and commonly found artifact

- CAMDA shows substantial banding reduction in CAMBI and (anecdotal) subjective improvements in both in-loop and post-loop cases
- Encoder and decoder-side complexity are very reasonable.
- CAMDA provides AVM with the functionality to remove bands and the encoder flexibility to apply it on a use-case basis
- On average, the post-loop filter is computationally more complex while having slightly better CAMBI scores and, possibly, being subjectively better.
- Subjective tests to be conducted to fully assess CAMDA benefits
 - They'll provide more evidence on the best position of CAMDA in the AVM filter chain

Comparisons with

post-processing filters

CAMDA shows large gains vs post-processing debanding

RA config, 8b seqs; gains of CAMDA vs **ffmpeg deband as anchor**:

Johnny @ QP160

AVM v3.1

AVM with CAMDA

AVM v3.1 + post-processing deband

Note: gray-levels stretched for better visibility