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Motivation

• Visual trajectory classification contributes to a variety of applications,
including the identification of crowdedness, behaviors, activities and events
of video scenes.
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Motivation

• Visual trajectory classification contributes to a variety of applications,
including the identification of crowdedness, behaviors, activities and events
of video scenes.

• Although extensively investigated, the limited sizes of labeled sample sets,
and the local variation and noises of the trajectories are still an open research
problems.

Introduction
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What is the paper about?

• To solve the problems in trajectory classification about automatically
modeling unlabeled and incomplete trajectories.

Introduction
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What is the paper about?

• To solve the problems in trajectory classification about automatically
modeling unlabeled and incomplete trajectories.

• Cluster-based dictionary learning (CDL) and locality-constrained sparse
reconstruction (LSR) are proposed.

• Experimental results show that our approach outperforms several recent
approaches.

Introduction
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1. Introduction

2. Overview of the framework
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• Two stages: Learning & Classifying

Overview of the framework

Trajectory Trajectory 

representation

Cluster-based Dictionary 

Initialization
Dictionary learning and Optimization

Feature Extraction

Sample 2 Sample 3

Trajectory 

Classification

Sample 1

Clustering

1t

2t

it

1d

2d

id

Sparse 

Coding
UpdatingLC-KSVD

LSR

Fig.1. Overview of the proposed approach. 

 Given a video scenario, we firstly assign trajectories into clusters based on the representative vectors.

 In the learning stage, an initial dictionary is obtained with the clustered trajectories and their corresponding labels. Then, a label consistency constraint and
optimal criteria are incorporated to learn the dictionary.

 In the classifying stage, a multiple-category classifier for trajectory is used to estimate trajectory label based on the LSR with learned dictionary.
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Trajectory representation

• Given a trajectory

• n — length of trajectory

• — n-th position point of the trajectory

• Control point-based feature representation

• — the p-th control point on B-spline basis function (predefined in [19])

• p — number of control points

• 、 — the normalized x-coordinate and y-coordinate

• LCSCA feature vector

Cluster-based dictionary learning
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[19] C. Li, Z. Han, Q. Ye, J. Jiao, “Visual abnormal behavior detection based on trajectory sparse reconstruction analysis,” Neurocomputing, vol. 119,
pp. 94-100, 2013.
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Cluster-based dictionary initialization

• firstly apply the K-means clustering with DTW distance

• given N trajectories as

• — LCSCA feature vector of trajectory

• a set of N feature vectors as

• learning a reconstructive dictionary D with M items for sparse representation of Y

• — the initial dictionary

• — the clustering results

• — the sparse representation of on D

Cluster-based dictionary learning
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Dictionary learning and optimization 

(1) keeping D fixed to find X-sparse coding

(2) keeping X fixed to find D–SVD decompositions

• LC-KSVD algorithm [21] to solve the objective function:

• A、W — discriminative sparse code error、classification error

• 、 — to control the relative contribution between reconstruction and label consistence
regularization

• incremental updating the D and X as training vectors come

• the set of labels is also updated according to clustering

Cluster-based dictionary learning

[21] Z. Jiang, Z. Lin, and L.S. Davis, “Label consistent k-svd: learning a discriminative dictionary for recognition,” TPAMI, vol. 35, no. 11, pp. 2651-
2664, 2013.
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1. Introduction

2. Overview of the framework

3. Cluster-based dictionary learning

4. Locality-constrained sparse reconstruction (Classifying)
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Partition

• partition the trajectories into
tracklets (trajectory segments)

• align the tracklets to construct a
local dictionary in [16]

• i-th tracklets of J kinds trajectories

Locality-constrained sparse reconstruction

[16] C. Li, Z. Han, S. Gao, L. Pang, Q. Ye, and J. Jiao, “Locality-constrained Sparse Reconstruction for Trajectory Classification,” in ICPR, 2014, pp.
2602-2606.
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Fig.2. Examples of a class of similar trajectories and their partitioned tracklets.

Left: six partitioned tracklets from a class of similar trajectories (blue curves).

Right: the whole trajectories with control points (red dots).
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Classification

• sparse linear reconstruction with locality-constrained dictionary

• trajectory is represented as the combination of the feature vectors of some tracklets

• each tracklet is approximately represented as a linear superposition of the local dictionary

• discriminate encoding and loss weighted decoding strategy

• combination of reconstruction results from multiple tracklets

• discriminate encoding M: — assign the i-th tracklet to the j-th class

• loss-based decoding — to classify a trajectory by assigning a label with minimal decoding
measure (detailed in [16])

Locality-constrained sparse reconstruction

[16] C. Li, Z. Han, S. Gao, L. Pang, Q. Ye, and J. Jiao, “Locality-constrained Sparse Reconstruction for Trajectory Classification,” in ICPR, 2014, pp.
2602-2606.
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Datasets

• CAVIAR [27]

• contains a series of trajectories in an entrance lobby with 11 entry-exit routes

• 1100 trajectories in the training set and 1121 trajectories in the testing set

• Carpark [28]

• contains 269 trajectories with 8 categories of trajectories in three crossroads

• 124 training trajectories and 145 testing trajectories

Experimental results

[27] CAVIAR: http://homepages.inf.ed.ac.uk/rbf/CAVIAR

[28] H.M. Dee, and D. Hogg, “Detecting inexplicable behavior,” in BMVC, 2004, pp.1-10.
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Algorithms compared

• HKM (Hierarchical K-Means) [13]

• PSC (Parallel Spectral Cluster) [29]

• GMMs (Guassian Mixture Models) [5]

Experimental results

Experimental setting

• 、 are respectively set to 0.01 and 1 to learn the dictionary with 110 items (M=110). We
evaluate the classification ability of our approach compared with three methods using 5, 15, 25,
35, 45, and 50 training samples per category, respectively.

𝛼 𝛽
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Experimental results

Table 1. Comparisons of classification accuracy (%) in the CAVIAR dataset.

Method
Number of training samples per class

5 15 25 35 45 50

HKM [13] 19.8 28.4 35.9 36.7 38.9 45.9

PSC [29] 21.9 23.6 37.1 38.6 47.4 68.3

GMMs [5] - - - - - 38.6

Our approach 38.7 58.4 65.5 67.3 70.1 72.3

Table 2. Comparisons of classification accuracy (%) in the Carpark dataset.

Method
Number of training samples per class

5 10 15

HKM [13] 17.9 33.7 37.5

PSC [29] 18.5 36.9 45.8

GMMs [5] - - 38.4

Our approach 38.1 66.7 69.2
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Experimental results

Fig.3. Examples of classified testing trajectories in the CAVIAR dataset. The results of: (a) HKM, (b) PSC, (c) GMMs, (d) our proposed approach.
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• Proposed the approach of Cluster-based Dictionary Learning (CDL) and
Locality-constrained Sparse Reconstruction (LSR) to classify the trajectories in
surveillance videos.

Conclusion
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• Proposed the approach of Cluster-based Dictionary Learning (CDL) and
Locality-constrained Sparse Reconstruction (LSR) to classify the trajectories in
surveillance videos.

• By introducing label consistency constraint and label updating strategy in the
dictionary, the incremental CDL approach can learn the dictionary that
explores the importance of the label consistency constraint and classification
optimization.

Conclusion
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• By introducing label consistency constraint and label updating strategy in the
dictionary, the incremental CDL approach can learn the dictionary that
explores the importance of the label consistency constraint and classification
optimization.

• On the learned dictionary, we obtain a multiple-category classifier based on
LSR that explores both sparsity and local adaptability for robust trajectory
classification.
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• Proposed the approach of Cluster-based Dictionary Learning (CDL) and
Locality-constrained Sparse Reconstruction (LSR) to classify the trajectories in
surveillance videos.

• By introducing label consistency constraint and label updating strategy in the
dictionary, the incremental CDL approach can learn the dictionary that
explores the importance of the label consistency constraint and classification
optimization.

• On the learned dictionary, we obtain a multiple-category classifier based on
LSR that explores both sparsity and local adaptability for robust trajectory
classification.

• Experimental results on two public datasets show the good performance of
our approach.

• Future work includes exploring better optimization algorithms to train the
automatic parameter setting.

Conclusion
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Thank you！ Any Questions？

Ce Li, Feng Yang

Department of Computer Science and Technology, CUMTB, CHINA

celi@cumtb.edu.cn

March 24th, 2016

28/33Ce Li, Feng Yang ICASSP 2016 March 24th, 2016


