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u Main assumption: input matrix is low-rank

u Measurements: 

§ : linear sampling operator 
§ : measurement vector
§ : noise vector
§

u Reconstruction: given           , recover     .  

Images courtesy of the research group of Prof. Yi Ma at UIUC.
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u Entropy Minimization for low-rank matrix recovery

where

u Questions of interest:
§ Why entropy minimization? è Sparsity inducing property
§ How to solve it? è ENM algorithm
§ What do we gain? è Faster sampling rate (show empirically) 

§ Why does it work theoretically? è (Future work)
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Fig. Illustration of Lemma 1: minimum entropy 
occurs at 1-sparse solution.
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u Robust variant:

u Technique: linearization
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Experiment ResultsExperiment Results

Algorithms:
§ ENtropy Minimization (ENM)
§ Singular Value Thresholding (SVT)  [Cai et al.]
§ Augmented Lagrange Multiplier (ALM)  [Lin et al.]

u Random subsampling (matrix completion):

u Synthetic data

Fig. Probability of exact recovery on synthetic data. 
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Algorithms:
§ ENM vs. Accelerated Proximal Gradient with Line Search (APGL)  [Toh & Yun]

u Random subsampling (matrix completion):

u Real data: MIT Logo

Fig. MIT logo and its singular values Fig. Low-rank matrix completion on MIT logo. 



What About Re-weighted ℓ1?What About Re-weighted ℓ1?
u ENM

u Reweighted ℓ1

u Common optimization problem 
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Not Separable in Its Parameters



Discussion: ENM WeightsDiscussion: ENM Weights

u Closed-form thresholds

u Threshold proven to be larger when associated 
singular value gets smaller è lower-rank solution 
from shrinkage operation!

u ENM encourages singular values to have a 
Laplacian distribution

2

11

loglog
t

j
t
j

t
j

t

t
it

iw
σσ

∑
+−=

σσσ



Final DiscussionFinal Discussion

u Both ENM and Re-weighted ℓ1 can be solved 
with the same strategy

u ENM seems to empirically offer a better 
weighting scheme than Re-weighted ℓ1

u Critical Questions:
§ How can we theoretically justify that?
§ Any other interesting applications of information 

theory tools/concepts to sparse problems?
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Fig. Illustration of Lemma 1: minimum entropy occurs at 
1-sparse solution.

Furthermore,

ˆ

x

0
= (1� ˆ�)ˆx1 +

ˆ�ˆx2,

for some constant

ˆ�.

As h(ˆx0
) is concave, its minima are archived

at the boundaries of the current orthant.


