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Low-rank matrix recovery

<pay, ¢ Mainassumption: input matrix is low-rank

rank(X) = r < min{n;,ny}

&% o Measurements: X e R™ XTo
' y=A(X)+ €

= 4 : R"1*"2 — R™: linear sampling operator
= ¢ € R™ : measurement vector

= ¢ € R™: noise vector
=M< NNy

58, ¢ Reconstruction: given (y, A), recover X.

> T » X7

X y

Images courtesy of the research group of Prof. Yi Ma at UTUC.
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Entropy Minimization

o Entropy Minimization for low-rank matrix recovery

ng}n hio(X)) st. A(X) =y,

-y Nz | log TI]:_TIIT is the entropy function,

¢ ||l
o(X) = (01(X),...,00,(X)) is the vector of singular values of X.

o Questions of interest:
=  Why entropy minimization? = Sparsity inducing property
= How to solve it? = ENM algorithm
s » What do we gain? = Faster sampling rate (show empirically)

= Why does it work theoretically? = (Future work)




Entropy Function Induces Sparsity

e e e e e ]

Recall h(x) = — 3, 1=, log (/%ik- for z € R™

Let X : be a discrete random variable with possible values {1, ...,n}:

il o glre
P(X =1) = yof;
— {ﬁ%ll—llf’ s IIZTI } is the distribution of X and H(X) = h(x)

Here, H(X) is the Shannon entropy of X.

Example: & € R?

‘,ll &

4 - h(x) = H(X) attains its maximum when z; = x4
' ; whereas its minima occur when & is 1 sparse

X1




Entropy Function Induces Sparsity

Consider a nonnegative diagonal matrix X

Let @ = diag(X), then @ = o(X). Assume z is sparse.

=) min h(x) st. Ax=0>.

Lemma. If there ezists two solutions &, # xo to Ax = b, with b # 0, in the
same d-dimensional orthant (d < n), then there is at least one solutions &' in
some d’-dimensional orthant such that d’ < d and h(z') < min{h(x,), h(x2)}.

Shifted null space of A

/ / S (@ Level curves of h(z)
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Fig. [llustration of Lemma 1: minimum entropy 6
occurs at 1-sparse solution.



ENM Asggrithm

I—

& o Robust variant:

II}}II Ah(O'(X)) 2 f(Xa A, y)a

for some loss function f : R™*"2 — R, with Lipchitz continuous gradient.
o Technique: linearization

At current estimate ot:
h(o) ~ h(c!) + Vh(e*)T (o — o!)
F(X) ~ f(XY) + VAXHT(X - X*) + ]| X - X3,
Y — Xt = argl)?in AVh(eY) o + f(X)

+VAXYT(X - XY+ 51X - X1}
2

= argmin AVh(c)) o + g ‘X — (X‘ — %Vf(X‘))
b'e

et



ENM Algorithm

o (e o)

Lemma. Let h be the entropy function, and let o be a positive vector, then

) ——

2
X! = argmin AVh(c!)To + g
X

Oh(o) _  logo; - Zj o;logo;
do; ol lellf

t ‘ L t
Lemma. Ifo{ >0} > .. 204 >0, then0< 2&) < o) o < OMo)

— 00.2 S i ao"n

Lemma. Let A > 0, X € R"*"2 agnd 0 < w; < wy < ... < w,, where
n = min{n,,ns}. Let X* be the optimal solution of the minimization problem

. 1 2
m,énAZijwiaz(X) + 51X - 2|, (1)

then
X* =UD)u(Z)VT, (2)

where Z = UXV?T and Dy(X) = diag{(o; — Mw;).} is the singular value
shrinkage operator. 8



ENM Algorithm

Algorithm 1 ENtropy-Minimization (ENM)

input: measurements (A,y), A >0, and p > Ly.
initialization: X©.
while not converged do

Update the weights:
t t
o _logaf Zj 0;logo; e g g (1)
? s
Sl lo* |13
Update the estimate:
X" =UDp/pu(B)V7, (2)

where X! — LVf(XY) =UZVT,
p
end while S
output: Estimated solution X.
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Experiment Results

¢ Random subsampling (matrix completion):

I’I;i(n ”X”* s.t. Xz'j = Mz‘j, (Z,J) € )

| T

T

o Synthetic data

] .‘:t
s X € R100x100 Eust )
T .
= |
m = 0.5n1n9 = 5000 samples = i«- |
P
¢ |
r = rank(X) varies el |
E { (
‘= b 1
X-M|; = 2 l— |
: |IM||2”F < 1073 — successful= ENM| ' | =
. F & s SVT | |
:A'\.E.. X » 'XL'\I + '
22 100 trials for each r o I o - TR S OR TR o NG TR AR O
;; L P T IR T | S T T Rk R
Alg orithms: Fig. Probability of exact recovery on synthetic data.
# = ENtropy Minimization (ENM)
|

Singular Value Thresholding (SVT) [Cai ef al.]
% = Augmented Lagrange Multiplier (ALM) [Lin et al.]



Experiment Results

o Random subsampling (matrix completion):
rr}i(n “X”* H Xt'j = M,;j, (Z,J) e

@ o Real data: MIT Logo

I I I i — o APGL

iy

Relative: Eran

” 1 1 —— | 1 3

K0 ) 1511 L1510 |25 | 330] [430)
TTT? Number of samples
P
Fig. MIT logo and its singular values Fig. Low-rank matrix completion on MIT logo.

Algorithms:
= ENM vs. Accelerated Proximal Gradient with Line Search (APGL) [Toh & Yun]




What About Re-weighted €,?

« ENM

min st. AX=y
X

Not Separable in Its Parameters

+ Reweighted (,
mmH log(x)H1 st. Ax=Yy
X

+ Common optimization problem

: u 2
min (wox ||, + Z-[Ax -y,

Key Difference



Discussion: ENM Weights

¢ Closed-form thresholds

O
l i lOgO'it i E]

to
J
W, = t

t
logo;
l 2

:

¢ Threshold proven to be larger when associated
singular value gets smaller =» lower-rank solution
from shrinkage operation!

+« ENM encourages singular values to have a
Laplacian distribution



Final Discussion

+ Both ENM and Re-weighted £, can be solved
with the same strategy

+ ENM seems to empirically offer a better
weighting scheme than Re-weighted £

o Critical Questions:

= How can we theoretically justify that?

= Any other interesting applications of information
theory tools/concepts to sparse problems?




Entropy Function Induces Sparsity
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Lemma. If there exists two solutions ©, # xo to Ax = b, with b # 0, in the
same d-dimensional orthant (d < n), then there is at least one solutions ' in

/ ) some d'-dimensional orthant such that d’ < d and h(z') < min{h(x), h(xz2)}.

A Proof.(sketch) For any & € R",
y define & = %, then h(x) = h(Z).

an one-to one mapping between @’ and &’.

Furthermore, &’ = (1 — 5\)53‘1 i 3@‘27

Let ' = (1 — A)x; + Axs, then there is 3

for some constant \. N

# As h(a') is concave, its minima are archived

©
N

@ Level curves of h(z)
—— Shifted null space of A

0.1

=2t the boundaries of the current orthant.

This also true for h(x’) by the one-to-one
apping between &’ and &'.

Therefore, we can tune A so that
4, @' lies at a boundary of the current orthant
“iand minimum entropy is archived.

=

Fig. [llustration of Lemma 1: minimum entropy occurs at

1-sparse solution.
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