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ABSTRACT

Most existing gait recognition methods are appearance-based,
which rely on the silhouettes extracted from the video data
of human walking activities. The less-investigated skeleton-
based gait recognition methods directly learn the gait dy-
namics from 2D/3D human skeleton sequences, which are
theoretically more robust solutions in the presence of ap-
pearance changes caused by clothes, hairstyles, and carrying
objects. However, the performance of skeleton-based solu-
tions is still largely behind the appearance-based ones. This
paper aims to close such performance gap by proposing a
novel network model, GaitMixer, to learn more discrimina-
tive gait representation from skeleton sequence data. In par-
ticular, GaitMixer follows a heterogeneous multi-axial mixer
architecture, which exploits the spatial self-attention mixer
followed by the temporal large-kernel convolution mixer to
learn rich multi-frequency signals in the gait feature maps.
Experiments on the widely used gait database, CASIA-B,
demonstrate that GaitMixer outperforms the previous SOTA
skeleton-based methods by a large margin while achieving
a competitive performance compared with the representa-
tive appearance-based solutions. Code will be available at
https://github.com/exitudio/gaitmixer

Index Terms— Gait Recognition, Self-Attention, Large-
kernel Convolution, Multi-axial Mixer

1. INTRODUCTION

Unlike short-distance biometrics (e.g., fingerprints, facial,
iris, palm, and finger vein patterns), gait can be recog-
nized from a distance without the subject’s cooperation or
interference. Such long-distance biometrics has a huge po-
tential to extend its applications to forensic identification,
access control, and social security. The gait recognition
methods are generally either appearance-based or skeleton-
based. Appearance-based approaches [1][2][3][4] utilize
background subtraction to obtain silhouettes from a video se-
quence, which are further analyzed using carefully-designed
network models for gait representation learning. On the other
hand, skeleton-based approaches [3][6][7] utilize the skele-
ton sequences extracted from 2D/3D pose estimators as the
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Fig. 1. (a) Global self-attention token mixing [8]. (b) Self-
attention mixing along H and W axes [9]. (c) Convolution-
mixing along H and W axes [6] (d) Heterogeneous multi-axial
mixer (ours).

inputs to learn effective gait representations. Theoretically,
skeleton-based methods are more robust to appearance vari-
ations caused by hairstyles, carrying objects, and clothes.
However, the skeleton-based approaches, which still do not
receive sufficient attention, yield a large performance gap
compared with the appearance-based counterparts.

To close this gap, this paper tries to exploit more effec-
tive gait feature encoders by proposing the multi-axial mixer,
which is a generic transformer-like architecture that mixes
the feature patches (i.e., tokens) along each axis of the fea-
ture space, respectively, e.g., width-wise, height-wise, and
channel-wise axes in image feature space. Many recent high-
performance network backbones can be considered as the spe-
cial cases of multi-axial mixer based on what types of mix-
ing functions are applied, which mainly include convolution
[6][LON[LL], self-attention [12][13]], and multi-layer percep-
trons (MLP) [[14]] [15] as shown in Fig. Multi-axial mix-
ers have been demonstrated to achieve SOTA performance in
image classification and video recognition tasks, while sig-
nificantly reducing computation complexities compared with
other competitive network models, such as vision transform-
ers. Despite their promising features, current multi-axial mix-
ers generally exploit the homogeneous architecture design,
where the same type of mixing functions (e.g., either con-
volution, self-attention, or MLP) is applied along each fea-
ture space axis. Such design, however, has limited capacity to
learn multi-frequency features. In particular, it has been es-
tablished that convolutions focus more on local information
and therefore are good learners for high-frequency features
[L6]. Self-attentions, on the contrary, are designed to model
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Fig. 2. (top) GaitMixer consists of a spatial mixer followed by a temporal mixer. (bottom) The detailed network architecture of
the spatial self-attention mixer and large-kernel convolution mixer

long-range interactions and are more capable to capture low-
frequency signals (global information) in feature map [[17].

In this paper, we propose GaitMixer, a novel heteroge-
neous spatial-temporal axial mixer, which can effectively
learn the discriminative gait representation by capturing both
high-frequency and low-frequency features. In particular,
GaitMixer consists of a spatial self-attention mixer and a
temporal large-kernel axial mixer (Fig. [2). The spatial axial
mixer learns interactions among the joints within each skele-
ton frame. The temporal axial mixer models the interactions
among the temporal tokens of each single joint at different
time indices. Experiments on the widely used gait database,
CASIA-B, demonstrate that GaitMixer outperforms the pre-
vious SOTA skeleton-based [6] methods by 12% on average,
while achieving a competitive performance compared with
the representative appearance-based solutions.

2. RELATED WORK

Appearance-based approaches extract binary images of a hu-
man silhouette from the source images by subtracting static
background [18]. GaitNet [[1] integrates silhouette extraction
into the model as an end-to-end network for gait recogni-
tion. GaitSet [2l] decouples the temporal continuous sequence
by learning identity information from the set of independent
frames to be immune to permutation of frames and be able to
integrate frames from different videos. While the majority of
methods [1][2]][4] take the entire shape as input, more recent
approaches GaitPart [3]] focus on each part of the body indi-
vidually assuming that each part of human body needs its own
spatial-temporal learning by separating silhouette into several
parts horizontally. Skeleton-based approaches (i.e., model-
based approaches) use skeleton data as the model inputs. In
the early work, pose-based temporal-spatial network (PTSN)
[S] utilizes a long-short term memory (LSTM) to capture the
dynamic information and CNN to learn static information of
a gait sequence in parallel. PoseGait [[19]] utilizes 3D pose es-

timated from images in order to be invariant to view changes,
along with hand-crafted features including joint angle, limb
length, and joint motion. The most recent methods, Gait-
Graph [6] and GaitGraph2 [7]], adopt graph convolution neu-
ral networks (GCNs) for gait recognition, inspired by the suc-
cesses of GCNs in action recognition tasks.

3. GAITMIXER: HETEROGENEOUS
WIDE-SPECTRUM SPATIAL-TEMPORAL MIXER

To effectively learn both high-frequency and low-frequency
gait features, we introduce the GaitMixer, a heterogeneous
spatial-temporal axial mixer architecture. As shown in Fig.
Pl GaitMixer consists of a spatial self-attention mixer and a
temporal large-kernel axial mixer (Fig. [2). The spatial axial
mixer only learns interactions among the joints within each
skeleton frame. The d,-dimensional spatial representation
yt € RIIXdy for each skeleton frame t with |.J| joints is
learned after Bg self-attention blocks. Then, the represen-
tations of 7' skeleton frames within a gait sequence are con-
catenated into z € RIVIXT*dy which is then forwarded to
a temporal axial mixer to capture the interactions among the
tokens of each single joint at different temporal indices. The
temporal axial mixer consists of B one-dimensional large-
kernel convolution blocks. Moreover, to simplify our Gait-
Mixer architecture, both spatial and temporal mixers adopt
the isotropic design, which does not perform feature down-
sampling and maintains the same feature resolutions at all
layers.

3.1. Spatial Mixer with Axial Self-attention

The spatial mixer module aims to learn a high dimensional
representation embedding from each skeleton frame. Al-
though self-attention tends to capture low-frequency (or
global) features, our experiments demonstrate that self-
attention is sufficient to learn both high-frequency and low-



frequency signals in the feature map along spatial axis. This
also indicates that self-attention can effectively model both
short-range and long-range inter-joint dependencies. Given
a 2D skeleton with joints .J, we consider each joint (i.e.,
and y coordinates) as a spatial token (with 2 channels) and
perform the feature extraction among all |.J| spatial tokens
by following the isotropic transformer pipeline. Specifically,
the spatial taken x; € R? is passed through a trainable lin-
ear projection, which maps each token to a high dimension
embedding x; € R% . Then, the spatial token embeddings
of each skeleton frame x = (x1,X2,...,X|y|) are mixed
by inter-token dot product attentions to generate an output
sequence y = (y1,y2,..-,y|j|) Where y; € R%. Running
self-attentions in parallel leads to the multihead self-attention
with h heads, where the outputs of the attention heads are
concatenated and projected into the expected dimensions.

3.2. Temporal Mixer with Large-kernel Convolution

The essence of a walking sequence is composed of multiple
short repeated cycles. In the temporal axis, self-attention may
not be able to capture wide-band multi-frequency features,
considering that the global receptive field of self-attention is
much easier to capture low-frequency features. It demands
a large amount of data for self-attention to establish the de-
sirable locality inductive bias that is the key to learn high-
frequency features. To learn both high-frequency and low-
frequency temporal data, we utilize large kernel depth-wise
separable convolution in the temporal mixer as illustrated in
Fig. 2l In general, convolution neural networks tend to cap-
ture high-frequency (local) features, however, the large ker-
nel allows the model to also learn low-frequency features. 60
frames are used in the temporal model which covers around
4 cycles of walking. A large one-dimension kernel with size
of 31 x 1 is used to capture mid-range information (around
2 walking cycles). A reverse padding with size of 30 is ap-
plied to keep the temporal dimension the same. The temporal
mixer only communicates with all frames along the temporal
axis of the same joints. A temporal mixer is composed of two
types of axial mixers. First, a token mixer is implemented by
a depth-wise convolution that learns all embeddings only in
the same channel. Next, a channel mixerisa 1 x 1 convolu-
tion that learns only specific embedding along all channels.

3.3. Representation head and Loss Function

We apply average pooling along spatial and temporal di-
mensions to reduce the output from Xsemp € RE(Ix€) o
Xphidden € R, where F' and J are number of frames and
joints respectively. The number of channels c is set to 256.
Finally, layer norm, fully connected layer, and /2-norm are
applied respectively and return the feature embedding in 128
dimensions. To learn the discriminative gait representation,
we apply the triplet loss with multi-similarity miner.

(a) GaltM|xer e

(b) GaltFormer

Fig. 3. 2D FFT of GaitMixer and GaitFormer feature maps of
4 channels. Higher temperature indicates larger magnitude.
Pixels closer to the center represent lower frequencies

4. EXPERIMENTS

4.1. Dataset

CASIA-B [20] has been widely adopted as a multi-view,
RGB, and silhouette gait dataset. The data acquisition is per-
formed by 124 individuals from 11 viewing angles ranging
from O to 180 with 18 angle differences. To mimic typical
daily walking conditions, each subject performs six sequences
of normal walking (NM), two sequences of walking with a
coat (CL), and two sequences of walking with carrying a
bag (BG). For each individual, ten sequences are captured
from each view angle. This paper follows a widely-used test
protocol [L][2][3N[6][7][19], which uses the data of the first
74 subjects’ sequences for the training and the remaining 50
subjects’ sequences for testing. Furthermore, the test dataset
is divided into gallery and probe sets. The gallery set includes
the first four sequences of the normal walking condition. The
probe set consists of the last two sequences of normal walk-
ing, two walking with a coat on, and walking with carrying a
bag. Finally, the results are reported for all viewing angles.

4.2. Implementation Details

Training Details HRNet [21]] is used as a 2D human pose
estimator. We follow data augmentations from GaitGraph[6]]
and add normalization of the joint position in (z, y)-coordinates
by dividing 320 which is the width of the original videos to
input data while keeping the aspect ratio. Adam optimizer is
used with 6e—3 learning rate with 1-cycle learning rate and
le—5 weight decay. We are using a balanced batch sampler
to sample the number of walking data per person equally. The
batch size is (74, 4), denoting 74 people and 4 walking sam-
ples per person. Testing. Each gait testing sample contains
60 frames selected from the middle of the sequence data. The
test set is separated into probe and gallery. Both are fed into
the model to obtain the feature representations. The ID of the
gallery representation that has the smallest cosine distance
from the probe will be the predicted ID of the probe.

4.3. Comparison with the SOTA Methods

To demonstrate the superior performance of GaitMixer as
a heterogeneous multi-axial mixer model, we also build
GaitFormer, which is a homogeneous multi-axial mixer that



Table 1. Averaged Rank-1 accuracies on CASIA-B per probe angle excluding identical-view cases.

Gallery NM#1-4 0°-180° mean
Probe 0° 18° | 36° | 54° | 72° | 90° | 108° | 126° | 144° | 162° | 180°

PoseGait [19] 5531 69.6 | 739 | 75.0 | 68.0 | 68.2 | 71.1 | 729 | 76.1 | 704 | 554 | 68.7

NM#5-6 GaitGraph [6 853 | 885 | 91.0 | 925 | 87.2 | 86.5 | 884 | 89.2 | 879 | 859 | 81.9 | 877
GaitGraph? [[7] 785 | 829 | 85.8 | 85.6 | 83.1 | 81.5 | 843 | 83.2 | 842 | 81.6 | 71.8 | 82.0

GaitFormer (ours) | 90.9 | 91.2 | 93.7 | 919 | 919 | 92.7 | 933 | 91.8 | 925 | 90.5 | 85.5 | 91.5
GaitMixer(ours) | 944 | 949 | 94.6 | 96.3 | 953 | 96.3 | 95.3 | 94.7 | 953 | 94.7 | 92.2 | 949

PoseGait [19] 353 | 47.2 | 524 | 46.9 | 455 | 43.9 | 46.1 | 48.1 | 494 | 43.6 | 31.1 | 445

BG#1-2 GaitGraph [6] 758 | 76.7 | 759 | 76.1 | 71.4 | 73.9 | 78.0 | 747 | 754 | 754 | 69.2 | 74.8
GaitGraph2 [7] 699 | 759 | 78.1 | 79.3 | 71.4 | 71.7 | 743 | 76.2 | 732 | 734 | 61.7 | 732

GaitFormer (ours) | 82.5 | 83.2 | 85.7 | 85.7 | 842 | 80.2 | 789 | 82.6 | 822 | 786 | 71.3 | 81.4
GaitMixer(ours) | 83.5 | 85.6 | 88.1 | 89.7 | 852 | 87.4 | 84.0 | 84.7 | 84.6 | 87.0 | 81.4 | 85.6

PoseGait [19] 243 1 29.7 | 41.3 | 38.8 | 382 | 385 | 41.6 | 449 | 422 | 334 | 22.5 | 36.0

CL#1-2 GaitGraph [6 69.6 | 66.1 | 68.8 | 67.2 | 64.5 | 62.0 | 69.5 | 65.6 | 65.7 | 66.1 | 643 | 663
GaitGraph?2 [[7] 57.1 | 61.1 | 689 | 66 | 67.8 | 654 | 68.1 | 67.2 | 63.7 | 63.6 | 504 | 63.6

GaitFormer (ours) | 76.1 | 80.3 | 81.0 | 782 | 77.7 | 76.6 | 77.4 | 758 | 76.5 | 7577 | 712 | 712
GaitMixer(ours) | 81.2 | 83.6 | 82.3 | 83.5 | 84.5 | 84.8 | 86.9 | 889 | 87.0 | 85.7 | 81.6 | 84.5

Table 2. Averaged Rank-1 accuracies on CASIA-B compari-
son with both appearance-based and skeleton-based methods

Probe

Methed NM [ BG | CL | Mean
Appearance GaitNet [1] 91.6 | 85.7 | 589 | 78.7 nEn'E’rEE
based GaitSet [2] 95.0 | 87.2 | 704 | 84.2 it ear
GaitPart [3] 962 | 915 | 78.7 | 88.8 e 3feufaer
PoseGait 687 | 445 | 360 | 49.7 iEteay
Skeleton GaitGraph 87.7 | 74.8 | 66.3 | 76.3 rig E—ﬂﬁ?ﬂr
based GaitGraph2 82.0 | 73.2 | 63.6 72.9 gghi:nr;i:
GaitFormer (ours) | 91.5 | 81.4 | 77.2 | 834 i f&ti:;'léelg
GaitMixer (ours) | 949 | 85.6 | 84.5 88.3 nght_ankle

adopts self-attention for both spatial and temporal axes. In
Fig. Bl we visualize the frequency magnitude of the output
feature maps from GaitMixer and GaitFormer, respectively.
It can be observed that GaitMixer concentrates on both high-
frequency and low-frequency components along both tem-
poral and spatial axes in feature maps. This confirms the
superior capacity of GaitMixer to capture features in wide-
spectrum bands. GaitFormer, however, cannot effectively
model the high-frequency feature components. The perfor-
mance comparisons between our approaches and the SOTA
skeleton-based methods are shown in Table [Il It is shown
that our multi-axial mixer models outperform the existing
solutions by a large margin in both cross-view and cross-
walking-condition cases. Moreover, GaitMixer achieves bet-
ter recognition accuracy than GaitFormer because GaitMixer
can jointly exploit the heterogeneous mixing at different
feature space dimensions. Table [2] shows a competitive per-
formance of our skeleton-based methods, compared with
the representative appearance-based methods. GaitMixer
achieves much higher accuracy than all appearance-based
approaches in wearing coat condition. It is due to the inherent
robustness of skeleton data against large appearance changes.

4.4. Visualization

We use class activation map (Grad-CAM) [22]] to show which
parts of the input gait sequence contribute most to the final
recognition result. As shown in Fig. ] (bottom), GaitMixer
focuses on continuous joint sequences with a variety of differ-

Fig. 4. Grad-CAM [22] visualizations. Top-left: GaitGraph
[6]. Top-right: GaitFormer. Bottom: GaitMixer. X-axis rep-
resents frames 1 to 60 and Y-axis represents 17 joints. Fea-
tures with higher contributions have higher heat temperatures.

ent temporal windows, thus capturing short-, mid, and- long-
range temporal feature interactions. Moreover, GaitMixer
also pays attentions to a diverse set of joints except ears, eyes,
and nose, which is also as expected because the landmarks on
face are not relevant to the gait dynamics. As shown in Fig. ]
(top-left), GaitGraph tends to focus on some specific joints
over a large temporal window and it also exploits the features
from face landmarks for gait recognition. Both limitations
could degrade the performance of GaitGraph. GaitFormer
(Fig. [] (top-right)) pays more attention to certain skeleton
frameworks without capturing rich spatial-temporal feature
interactions. This can be the key contributing factor that
affects its performance.

5. CONCLUSION

In this paper, we present GaitMixer model, a novel het-
erogeneous multi-axial architecture combining a spatial self-
attention mixer and a large kernel temporal convolution mixer
to capture both high-frequency and low-frequency dynamics
of gait data. Our approach achieves the best accuracy on the
well-known CASIA-B gait dataset for all conditions when
compared to previous skeleton-based methods and is superior
to appearance-based approaches with coats conditions.
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