

Transient Dictionary Learning for Compressed Time-of-Flight Imaging

2023 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2023)

Miguel Heredia Conde 4th -10th June 2023

uni-siegen.de/zess

www.uni-siegen.de/zess

Introduction

Introduction Time-of-Flight 3D Imaging

Principle of Operation:

- Overarching idea: time of flight of photons encodes depth
- How to realize a time-resolved camera at low cost?
 - Modulated illumination → Fast NIR LED or VCSEL emitters + drivers
 - **Demodulating pixels** \rightarrow Integration of photogenerated carriers controlled by custom signals
 - Result: electrooptical correlation sampling

Introduction Time-of-Flight 3D Imaging

Generic ToF Imaging Model:

- Modulated illumination signal: i(t)
- Scene response function (SRF): h(t)
- $K \ge 1$ demodulation functions: $p_k(t)$, $1 \le k \le K$
- Return from the scene: r(t) = i * h(t)
- ToF correlation measurements (continuous):

 $m_k(t) = p_k \otimes r(t) = p_k \otimes (i * h)(t) = (i \otimes p_k) * h(t)$

- <u>Meaning</u>: samples of the **convolution** between h(t) and sensing functions $\phi_k(t) \coloneqq (i \otimes p_k)(t)$
- Conventional ToF: K = 1 and sampling at different τ_i
 - Continuous Wave (CW) \rightarrow Sinusoidal $\phi(t)$ [Heredia Conde, 2007]
 - Pulsed \rightarrow Triangular $\phi(t)$
- Coded ToF: K > 1, typically only for $\tau = 0$ [Gupta *et al.*, 2018], [Lopez Paredes *et al.*, 2023]

Introduction Ideal vs. Real Scene Responses

Ideal Scene Response Functions:

- Best case: single bounce per pixel
 - SRF: scaled and shifted Dirac delta function, $h(t) \coloneqq \Gamma_0 \delta(t t_0)$
 - Γ_0 denotes the amplitude and $t_0 = 2d_0/c$ the time delay
- Multi-path Interference (MPI): multiple bounces per pixel
 - SRF: weighted sum of shifted Dirac delta functions:

- Result of global light transport effects
- Not itself sparse, but of low complexity

77.

Randomly-selected Transients for the kitchen Scene

Barragan et al., 2021].

P-1

 $h(t) \approx$

Randomly-selected Transients for the kitchen-2 Scene

15

0.2

Ē

Methodology

Methodology A Compressed Sensing (CS) View of ToF 3D Imaging

Aggregated measurement matrix, $A\coloneqq\Phi\Psi$

Methodology A Compressed Sensing (CS) View of ToF 3D Imaging

Consequences of the CS Model:

- Fully linear sensing model: $\vec{y} = A \vec{x}$, with $A \coloneqq \Phi \Psi$
- Incoherence requirement between Φ and Ψ . $\vec{\psi}_i$ narrowly supported $\rightarrow \vec{\phi}_i$ widely spread, $\forall i$
- The SRF can be readily obtained from \vec{x} : $\vec{h} = \Psi \vec{x}$
- In turn, \vec{x} can be obtained solving a linearly-constrained sparse reconstruction problem:

$$\hat{\vec{x}} = \underset{\vec{x}}{\operatorname{argmin}} \|\vec{x}\|_0 \text{ subject to } \vec{y} = A \vec{x}$$

• Or its convex relaxation:

$$\hat{\vec{x}} = \underset{\vec{x}}{\operatorname{argmin}} \|\vec{x}\|_1 \text{ subject to } \vec{y} = A \vec{x}$$

Methodology CW-ToF Sensing Model

Fourier Sampling of Spiky Signals:

- Use *sinusoids* as sensing functions
- Complies with the incoherence requirement between Φ and Ψ
- For a given frequency, f_k , multiple raw measurements can be combined to generate a **complex** phasor:

$$y_{k}^{\Re} = \vec{\phi}_{k}^{\Re^{\mathsf{T}}} \vec{h}, \quad \text{with } \vec{\phi}_{k}^{\Re^{\mathsf{T}}}[i] = A\cos(2\pi f_{k}i\Delta t)$$
$$y_{k}^{\Im} = \vec{\phi}_{k}^{\Im^{\mathsf{T}}} \vec{h}, \quad \text{with } \vec{\phi}_{k}^{\Im^{\mathsf{T}}}[i] = A\sin(2\pi f_{k}i\Delta t)$$

where Δt denotes the discrete time step.

• Real SRF \rightarrow **real** sensing model:

$$\vec{y} = \Phi \vec{h}$$
, with $\Phi \coloneqq \begin{bmatrix} \Phi^{\Re} \\ \Phi^{\Im} \end{bmatrix}$, $\Phi^{\Re} \coloneqq \begin{bmatrix} \vec{\phi}_k^{\Re^{\mathsf{T}}} \end{bmatrix}_{k=1}^K$
 $\Phi^{\Im} \coloneqq \begin{bmatrix} \vec{\phi}_k^{\Im^{\mathsf{T}}} \end{bmatrix}_{k=1}^K$

Methodology Transient Dictionary Learning

How to Obtain the Best Dictionary?

- Goal: represent any SRF, \vec{h} , with few $\vec{\psi}_i$, as accurately as possible
- Idea: find the set of $\vec{\psi}_i$ that best represent a collection of data $H = \left[\vec{h}_i\right]_{1 \le i \le M}$

• **How?** Optimization problem:

 $\widehat{\Psi}, \widehat{\mathbf{X}} = \underset{\Psi, \mathbf{X}}{\operatorname{argmin}} \| \mathbf{H} - \Psi \mathbf{X} \|_{F}^{2}$, subject to $\| \vec{x}_{i} \|_{0} \leq s_{\max}, \forall i$ where $\mathbf{X} = [\vec{x}_{i}]_{1 \leq i \leq M}$ and s_{\max} is an upper bound for the sparsity s.

Experimental Evaluation

Experimental Evaluation What is the Best Method for Learning Sparse Transient Dictionaries?

Candidate Methods:

- Method of Optimal Directions (MOD) [Engan et al., 1999]
- K-Singular Value Decomposition (K-SVD) [Aharon et al., 2006]
- Approximate K-SVD [Rubinstein et al., 2018]
- Online Dictionary Learning (ODL) [Mairal et al., 2009]
- Reweighted Least Squares Dictionary Learning Algorithm (RLS-DLA) [Skretting and Engan, 2010]

Homogenized Conditions:

- Same data-agnostic tight frame, $\Psi^{(0)}$, used as seed; $s_{\text{max}} = 16$ for training N = 8000 atoms
- Orthogonal Matching Pursuit (OMP) used as sparse approximation method for speed
- Random selection of 10⁵ transients for training, over the > 4 × 10⁵ available in 21/25 scenes of iToF2dToF [Gutierrez-Barragan *et al.*, 2021]
- Four remaining scenes for posterior validation

Experimental Evaluation Depth Retrieval Performance

Depth Retrieval from Reconstructed Transient Profiles:

• Via peak detection:

$$\hat{d} = \frac{c}{2(\hat{i}\Delta t)}, \hat{i} = \operatorname*{argmax}_{i} \hat{\vec{h}}[i], \text{ s.t. } \hat{\vec{h}}[i] > \epsilon,$$

$$\widehat{\vec{h}} \qquad \text{ with } \hat{\vec{h}} = \Psi \, \hat{\vec{x}}$$

Depth MAE per Percentile [mm] for Scene 12 ("kitchen"):

Percentile	0-75%	75-85%	85-95%	95-99%	
MOD	0	3.248	7.041	24.38	Best in all percentiles
K-SVD	0	4.571	7.270	24.97	
Approx. K-SVD	0.1240	5.000	8.162	26.29	
ODL	0.3212	5.000	10.22	31.07	
RLS-DLA	1.077	5.341	12.27	40.47	
Best of [GB. <i>et al.</i> , 2021]	7.19	20.40	32.17	71.56	

Experimental Evaluation How Sparse are the Transient Profiles?

Evolution of Normalized RMSE of the Transient Profiles vs. Sparsity, s:

Evolution of Depth MAE vs. Sparsity, *s*:

Experimental Evaluation How Many Measurements?

Experimental Evaluation Robustness to Noise

How Robust is the Reconstruction to Measurement Noise? Results for m = 20:

Evolution of Depth MAE vs. SNR:

Conclusions

Conclusions **Conclusions**

In a Nutshell...

- Robust **CS-based** depth estimation from *few* **MPI**-corrupted **ToF** measurements demonstrated
- **CW-ToF** sensing model leveraging **uniform** and **non-uniform** frequency sampling schemes
- Classical sparse dictionary learning methods used to learn a representation for transient profiles
- Learnt representations only limit transient profile reconstruction accuracy beyond $50~\mathrm{dB}$

Take-home Messages

- CS + trained dictionary as alternative to [or baseline for] deep learning models
- Number of measurements decoupled from the transient ambient dimension, $m \sim O(s)$
- NUS schemes allow for operating with fewer measurements

References

[Heredia Conde, 2007] M. Heredia Conde, Compressive Sensing for the Photonic Mixer Device - Fundamentals, Methods and Results. Springer Vieweg, 2017.

[Gupta *et al.*, 2018] M. Gupta, A. Velten, S. K. Nayar, E. Breitbach, "What Are Optimal Coding Functions for Time-of-Flight Imaging?," in *ACM Transactions on Graphics*, vol. 37, no. 2, pp. 1-18, 2018, doi: <u>10.1145/3152155</u>.

[Lopez Paredes *et al.*, 2023] A. Lopez Paredes, M. **Heredia Conde** and O. Loffeld, "Sparsity-Aware 3-D ToF Sensing," in *IEEE Sensors Journal*, vol. 23, no. 4, pp. 3973-3989, 2023, doi: <u>10.1109/JSEN.2023.3234533</u>.

[Gutierrez-Barragan *et al.*, 2021] F. Gutierrez-Barragan, H. Chen, M. Gupta, A. Velten and J. Gu, "iToF2dToF: A Robust and Flexible Representation for Data-Driven Time-of-Flight Imaging," in *IEEE Transactions on Computational Imaging*, vol. 7, pp. 1205-1214, 2021, doi: <u>10.1109/TCI.2021.3126533</u>.

[Engan *et al.*, 1999] Kjersti Engan, Sven O. Aase, and John Hakon Husoy, "Method of Optimal Directions for Frame Design," in *Proceedings of the 1999 IEEE Intl. Conf. on Acoustics, Speech, and Signal Processing (ICASSP)*, 1999, vol. 5, pp. 2443–2446.
[Aharon *et al.*, 2006] Michal Aharon, Michael Elad, and Alfred Bruckstein, "K-SVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse Representation," *IEEE Transactions on Signal Processing*, vol. 54, no. 11, pp. 4311–4322, 2006.
[Rubinstein *et al.*, 2018] Ron Rubinstein, Michael Zibulevsky, and Michael Elad, "Efficient Implementation of the K-SVD Algorithm Using Batch Orthogonal Matching Pursuit," Tech. Rep., Technion – Computer Science Department, 2018.

[Mairal *et al.*, 2009] Julien Mairal, Francis Bach, Jean Ponce, and Guillermo Sapiro, "Online Dictionary Learning for Sparse Coding," in *Proceedings of the 26th Annual International Conference on Machine Learning*, New York, NY, USA, 2009, ICML '09, pp. 689–696, Association for Computing Machinery.

[Skretting and Engan, 2010] Karl Skretting and Kjersti Engan, "Recursive least squares dictionary learning algorithm," *Trans. Sig. Proc.*, vol. 58, no. 4, pp. 2121–2130, apr 2010.

Thank You for your Attention!

Miguel Heredia Conde Research Group on "Compressive Sensing for the Photonic Mixer Device" Center for Sensor Systems (ZESS) University of Siegen

heredia@zess.uni-siegen.de www.uni-siegen.de/zess

Ů/

