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Time-of-Flight 3D Imaging

Principle of Operation:

• Overarching idea: time of flight of photons encodes depth
• How to realize a time-resolved camera at low cost?

• Modulated illumination → Fast NIR LED or VCSEL emitters + drivers
• Demodulating pixels → Integration of photogenerated carriers controlled by custom signals
• Result: electrooptical correlation sampling
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Time-of-Flight 3D Imaging

Generic ToF Imaging Model:

• Modulated illumination signal: 𝑖𝑖(𝑡𝑡)
• Scene response function (SRF): ℎ(𝑡𝑡)
• 𝐾𝐾 ≥ 1 demodulation functions: 𝑝𝑝𝑘𝑘(𝑡𝑡), 1 ≤ 𝑘𝑘 ≤ 𝐾𝐾
• Return from the scene: 𝑟𝑟 𝑡𝑡 = 𝑖𝑖 ∗ ℎ(𝑡𝑡)
• ToF correlation measurements (continuous):

𝑚𝑚𝑘𝑘(𝑡𝑡) = 𝑝𝑝𝑘𝑘 ⊗ 𝑟𝑟 𝑡𝑡 = 𝑝𝑝𝑘𝑘 ⊗ 𝑖𝑖 ∗ ℎ 𝑡𝑡 = 𝑖𝑖 ⊗ 𝑝𝑝𝑘𝑘 ∗ ℎ(𝑡𝑡)
• Meaning: samples of the convolution between ℎ(𝑡𝑡) and sensing functions 𝜙𝜙𝑘𝑘 𝑡𝑡 ≔ 𝑖𝑖 ⊗ 𝑝𝑝𝑘𝑘 (𝑡𝑡)
• Conventional ToF:𝐾𝐾 = 1 and sampling at different 𝜏𝜏𝑖𝑖

• Continuous Wave (CW) → Sinusoidal 𝜙𝜙 𝑡𝑡 [Heredia Conde, 2007]
• Pulsed → Triangular 𝜙𝜙 𝑡𝑡

• Coded ToF:𝐾𝐾 > 1, typically only for 𝜏𝜏 = 0 [Gupta et al., 2018], [Lopez Paredes et al., 2023]
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Ideal vs. Real Scene Responses

Ideal Scene Response Functions:

• Best case: single bounce per pixel
• SRF: scaled and shifted Dirac delta function, ℎ 𝑡𝑡 ≔ Γ0𝛿𝛿(𝑡𝑡 − 𝑡𝑡0)
• Γ0 denotes the amplitude and 𝑡𝑡0 = 2𝑑𝑑0/𝑐𝑐 the time delay

• Multi-path Interference (MPI): multiple bounces per pixel
• SRF: weighted sum of shifted Dirac delta functions:

ℎ 𝑡𝑡 ≔ �
𝑖𝑖=0

𝑃𝑃−1

Γ𝑖𝑖𝛿𝛿(𝑡𝑡 − 𝑡𝑡𝑖𝑖) , 𝑡𝑡𝑖𝑖 =
2𝑑𝑑𝑖𝑖
𝑐𝑐

Real Scene Response Functions:

• Result of global light transport effects
• Not itself sparse, but of low complexity
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Ten randomly-selected transient profiles from the “kitchen” and 
“kitchen-2” scenes (IDs 12 and 13) of the iToF2dToF dataset [Gutierrez-
Barragan et al., 2021]. 
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A Compressed Sensing (CS) View of ToF 3D Imaging

Per-pixel Sensing Model Overview:
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A Compressed Sensing (CS) View of ToF 3D Imaging

Consequences of the CS Model:

• Fully linear sensing model: �⃗�𝑦 = 𝑨𝑨 �⃗�𝑥, with 𝑨𝑨 ≔ 𝚽𝚽𝚿𝚿
• Incoherence requirement between 𝚽𝚽 and 𝚿𝚿. 𝜓𝜓𝑖𝑖narrowly supported → 𝜙𝜙𝑖𝑖 widely spread, ∀ 𝑖𝑖
• The SRF can be readily obtained from �⃗�𝑥: ℎ = 𝚿𝚿 �⃗�𝑥
• In turn, �⃗�𝑥 can be obtained solving a linearly-constrained sparse reconstruction problem:

�⃗𝑥𝑥 = argmin
�⃗�𝑥

�⃗�𝑥 0 subject to �⃗�𝑦 = 𝑨𝑨 �⃗�𝑥

• Or its convex relaxation:
�⃗𝑥𝑥 = argmin

�⃗�𝑥
�⃗�𝑥 1 subject to �⃗�𝑦 = 𝑨𝑨 �⃗�𝑥
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CW-ToF Sensing Model

Fourier Sampling of Spiky Signals:

• Use sinusoids as sensing functions → CW-ToF
• Complies with the incoherence requirement between 𝚽𝚽 and 𝚿𝚿
• For a given frequency, 𝑓𝑓𝑘𝑘, multiple raw measurements can be combined to generate a complex phasor:

𝑦𝑦𝑘𝑘ℜ = 𝜙𝜙𝑘𝑘ℜ
⊤
ℎ, with 𝜙𝜙𝑘𝑘ℜ

⊤
𝑖𝑖 = 𝐴𝐴 cos 2𝜋𝜋𝑓𝑓𝑘𝑘𝑖𝑖Δ𝑡𝑡

𝑦𝑦𝑘𝑘
ℑ = 𝜙𝜙𝑘𝑘

ℑ⊤ℎ, with 𝜙𝜙𝑘𝑘
ℑ⊤ 𝑖𝑖 = 𝐴𝐴 sin 2𝜋𝜋𝑓𝑓𝑘𝑘𝑖𝑖Δ𝑡𝑡

where Δ𝑡𝑡 denotes the discrete time step.
• Real SRF → real sensing model:

�⃗�𝑦 = 𝚽𝚽ℎ,  with 𝚽𝚽 ≔ 𝚽𝚽ℜ

𝚽𝚽ℑ ,   
𝚽𝚽ℜ ≔ 𝜙𝜙𝑘𝑘ℜ

⊤

𝒌𝒌=𝟏𝟏

𝑲𝑲

𝚽𝚽ℑ ≔ 𝜙𝜙𝑘𝑘
ℑ⊤

𝒌𝒌=𝟏𝟏

𝑲𝑲
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Transient Dictionary Learning

How to Obtain the Best Dictionary?

• Goal: represent any SRF, ℎ, with few 𝜓𝜓𝑖𝑖, as accurately as possible

• Idea: find the set of 𝜓𝜓𝑖𝑖 that best represent a collection of data 𝑯𝑯 = ℎ𝑖𝑖 1≤𝑖𝑖≤𝑀𝑀

• How? Optimization problem:
�𝚿𝚿, �𝐗𝐗 = argmin

𝚿𝚿,𝐗𝐗
𝑯𝑯 −𝚿𝚿𝐗𝐗 𝐹𝐹

2 , subject to �⃗�𝑥𝑖𝑖 0 ≤ 𝑠𝑠max,∀𝑖𝑖

where 𝐗𝐗 = �⃗�𝑥𝑖𝑖 1≤𝑖𝑖≤𝑀𝑀 and 𝑠𝑠max is an upper bound for the sparsity 𝑠𝑠.
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What is the Best Method for Learning Sparse Transient Dictionaries?

Candidate Methods:

• Method of Optimal Directions (MOD) [Engan et al., 1999]
• K-Singular Value Decomposition (K-SVD) [Aharon et al., 2006]
• Approximate K-SVD [Rubinstein et al., 2018]
• Online Dictionary Learning (ODL) [Mairal et al., 2009]
• Reweighted Least Squares Dictionary Learning Algorithm (RLS-DLA) [Skretting and Engan, 2010]

Homogenized Conditions:

• Same data-agnostic tight frame, 𝚿𝚿(0), used as seed; 𝑠𝑠max = 16 for training 𝑁𝑁 = 8000 atoms
• Orthogonal Matching Pursuit (OMP) used as sparse approximation method for speed
• Random selection of 𝟏𝟏𝟎𝟎𝟓𝟓 transients for training, over the > 4 × 105 available in 21/25 scenes of 

iToF2dToF [Gutierrez-Barragan et al., 2021]
• Four remaining scenes for posterior validation
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Depth Retrieval Performance

Depth Retrieval from Reconstructed Transient Profiles:

• Via peak detection: 

Depth MAE per Percentile [mm] for Scene 12 (“kitchen”):
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Percentile 0-75% 75-85% 85-95% 95-99%

MOD 0 3.248 7.041 24.38
K-SVD 0 4.571 7.270 24.97
Approx. K-SVD 0.1240 5.000 8.162 26.29
ODL 0.3212 5.000 10.22 31.07
RLS-DLA 1.077 5.341 12.27 40.47
Best of [G.-B. et al., 2021] 7.19 20.40 32.17 71.56

Best in all 
percentiles

�̂�𝑑 = 𝑐𝑐
2 �̂�𝚤Δ𝑡𝑡

, ̂𝚤𝚤 = argmax
𝑖𝑖

�ℎ 𝑖𝑖 , s.t. �ℎ 𝑖𝑖 > 𝜖𝜖, 
̂𝚤𝚤

with �ℎ = 𝚿𝚿 �⃗𝑥𝑥�ℎ



How Sparse are the Transient Profiles?

Evolution of Normalized RMSE of the Transient Profiles vs. Sparsity, 𝑠𝑠:

Evolution of Depth MAE  vs. Sparsity, 𝑠𝑠:

4th -10th June 2023Transient Dictionary Learning for Compressed Time-of-Flight Imaging 14

Experimental Evaluation

MOD K-SVD Approx. K-SVD

MOD K-SVD Approx. K-SVD



How Many Measurements?

How to Select the Frequencies, 𝑓𝑓𝑘𝑘? Four Options:

Evolution of Depth MAE  vs. 𝛿𝛿 ≔ 𝑚𝑚/𝑛𝑛 (solid: 95-99%, dashed: 85-95%):
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𝑚𝑚 = 20



Robustness to Noise
How Robust is the Reconstruction to Measurement Noise? Results for 𝑚𝑚 = 20:

Evolution of Depth MAE  vs. SNR:
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a) Uniform b) Random within grid c) Random d) Sparse ruler
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Conclusions

In a Nutshell…

• Robust CS-based depth estimation from few MPI-corrupted ToF measurements demonstrated
• CW-ToF sensing model leveraging uniform and non-uniform frequency sampling schemes
• Classical sparse dictionary learning methods used to learn a representation for transient profiles
• Learnt representations only limit transient profile reconstruction accuracy beyond 50 dB

Take-home Messages

• CS + trained dictionary as alternative to [or baseline for] deep learning models
• Number of measurements decoupled from the transient ambient dimension, 𝑚𝑚 ~ 𝒪𝒪 𝑠𝑠
• NUS schemes allow for operating with fewer measurements
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