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ABSTRACT
Time-of-Flight imaging aims to retrieve the 3D geometry of a scene
from the delay that a modulated light waveform experiences when
interacting with the former. Multi-path interference, arising from
translucent objects or concave geometries, poses a challenge when
the problem is to be solved from few measurements. In this work,
we step aside from mainstream deep learning methods to invert the
problem and propose exploiting underlying sparsity in an appropri-
ate basis, in combination with compressive sampling schemes. More
specifically, we show that the temporal response functions of real-
life scenes are of bounded complexity and can be sparsely repre-
sented in a learned dictionary. A variety of sparse dictionary learn-
ing techniques are considered to find appropriate time-domain bases.
Uniform frequency-domain sampling is compared to random sam-
pling schemes and sparse rulers. Simulations acknowledge the su-
periority of non-uniform sampling and confirm that both transient
profiles and millimeter-accurate depth images can be successfully
reconstructed from few measurements.

Index Terms— Time-of-Flight, depth imaging, transient imag-
ing, dictionary learning, non-uniform sampling

1. INTRODUCTION

Time-of-Flight (ToF) cameras are active imaging sensors able to re-
trieve the 3D geometry of the environment. To this end, the scene
is flood-illuminated with modulated light and the backscattered light
is collected by an array of pixels with demodulating capabilities, re-
ferred to as ToF pixels. The conjunction of a time-domain modulated
probing signal and an array of detectors with time-domain demod-
ulation capacity yields temporal resolution. Different from conven-
tional imaging sensors, which are blind to the transient response of
the scene, measurements from a ToF camera effectively sample the
latter. Exploiting the crucial fact that the distance or depth of an
object is encoded as a time-delay in the backscattered photons, ToF
cameras are able to retrieve depth images of the scene.

However, accurately retrieving the depth from the raw ToF mea-
surements may become challenging in real-world conditions, as the
light reaching a ToF pixel might be the superposition of the direct
retroreflection from the target plus light returning along the same di-
rection as a result of more complex light transport effects. This situa-
tion is commonly denominated as Multipath Interference (MPI) and
may include both diffuse components and reflective components. A
large number of works have aimed to compensate the effect of MPI
on the depth estimate and even retrieve the depth corresponding to
multiple return paths [1, 2, 3, 4]. Approaches aiming for compensa-
tion leveraging light transport models based on the scene geometry
[1, 3] are too slow for real-time processing. Techniques relying on
parametric spectral estimation methods [2, 4] are specially attrac-
tive, for being both accurate and outstandingly fast. However, these
methods rely on the hypothesis that the time-domain scene response
function, hsce(t), also known as transient response, is sparse, that is,

it can be modelled as a sum of scaled and shifted Dirac delta func-
tions. As a matter of fact, this situation does not hold in general.
For instance, concavity of objects and scene geometries often yields
dense transient profiles due to multiple interreflections [5].

Waiving the sparsity constraint on hsce has two negative conse-
quences: first, it disables the use of parametric inversion and brings
the need for substitutive regularization constraints and, second, it in-
creases the number of measurements required to retrieve hsce. Meth-
ods attempting to solve MPI for a general hsce for an array of ToF
pixels enter into the realm of transient imaging. In fact, arrays of
ToF pixels have already been exploited to this end [6, 7, 5]. Mea-
surements at different frequencies are obtained from ToF pixels op-
erating in Continuous Wave (CW) mode, such as those based on
the Photonic Mixer Device (PMD) [8]. The overarching idea is that
CW-ToF pixels are able to deliver approximate samples of hsce in
frequency domain. Alternatively, binary codes with good autocorre-
lation properties, i. e., wide frequency spread, can be used as mod-
ulation/demodulation functions instead of sinusoids, in order to re-
trieve hsce [9].

Recently, deep learning methods have been proposed to cope
with the effect of MPI [10, 11, 12, 13, 14]. As the problem formu-
lation merges, in its most general version, with transient imaging,
recent works on MPI estimation and compensation have resorted to
deep learning models to reconstruct a discrete version of the transient
function, hsce, and simultaneously deliver an MPI-free depth esti-
mate [15, 16]. A common denominator to all of them is the under-
lying hypothesis that the transient images can be accurately recon-
structed from compact representations in a low-dimensional latent
space. This justifies the multiple architectures with U-shaped and
encoder-decoder structures. A question that remains unanswered if
whether one can find a representation basis to efficiently encode the
transient profiles. Analytical expressions for the shape of hsce have
been discussed in the literature [17, 16], but without proof of opti-
mality in a given sense.

In this work, inspired by recent approaches aiming to use tran-
sient profiles as a proxy for MPI-free depth estimation [15], we
propose learning optimal frames that allow for sparse representa-
tions of such functions. We capitalize on the fact that an underlying
sparse representation opens the door for a compressive sensing (CS)
[18, 19] formulation, in which the sparse coefficients may be re-
trieved from a reduced number of measurements. Furthermore, and
adopting a CS perspective on the reconstruction problem, we revisit
the sampling scheme to be implemented in the frequency domain.
Most related work requiring a set of measurements at different fre-
quencies either adopt a uniform sampling grid or select the frequen-
cies to be coincident with those implemented in commercial CW-
ToF cameras, without further analysis. However, [20] has shown
that non-uniform frequency sampling may enable a reduction of the
number of measurements required to solve the MPI problem, while
retaining accuracy. Consequently, we will evaluate both uniform and
non-uniform frequency sampling schemes in a CS setting.



2. RELATED WORK

As briefly commented in section 1, recent work on MPI compensa-
tion has stepped away from both explicitly modelling light transport
or aiming for closed-form solutions derived from simple models of
hsce. Instead, deep learning has been the tool of choice for solving
this inverse problem. In the following we comment representative
works of this trend that serve as a basis for this work.

In [10], a neural network (NN) is proposed that accepts a depth
image affected by MPI as input and delivers an MPI-corrected depth
image as output. The neural network model is, initially, a convolu-
tional autoencoder, which is subject to a later process of training as
supervised decoder, fixing the encoder side and adding skip connec-
tions at multiple scales, for the task of MPI compensation. Instead of
correcting a depth image affected by MPI, in [11], a NN is proposed
to predict a corrected depth image from dual-frequency raw ToF
data. The network covers three functions in an aggregated fashion:
denoising, phase unwrapping, and MPI compensation. The architec-
ture combines a symmetrically skip-connected encoder-decoder gen-
erator network with a patchGAN discriminator network. Similarly to
[10], skip connections are contemplated at multiple scales. Similarly
to [11], the two-stage NN architecture introduced in [12] also oper-
ates on multi-frequency raw ToF measurements and corrects them
for posterior depth estimation. The first stage is an encoder-decoder
architecture aiming to compensate for motion artifacts. The sec-
ond stage consists of a kernel-predicting network that aims to jointly
compensate the effect of MPI and shot noise. In [13], the input data
are depth and amplitude images obtained at three frequencies. The
actual data plugged to the network are ratios between amplitudes and
differences between unwrapped depths at different frequencies The
network learns the MPI correction in depth domain. A convolutional
NN (CNN) architecture is employed. In [14] work, in parallel to a
coarse-to-fine CNN trained on synthetic data in a supervised man-
ner, a discriminator CNN is trained in parallel in a GAN fashion
to perform unsupervised pixel-level domain adaptation to real-world
data.

A more ambitious alternative than correcting the effect of MPI
is to train a NN to reconstruct transient images from ToF measure-
ments, that is, a discrete version of hsce for each pixel. Then, single-
and multiple-path depth estimation boils down to appropriate peak
detection in the transient profiles. This is the approach presented in
[15]. More specifically, the NN proposed in [15] performs frequency
interpolation and extrapolation, followed by Inverse Fourier Trans-
form (IFT) and filtering to reconstruct the transient profiles. The NN
architecture is a U-net with skip connections. In [16], a three-stage
NN model is proposed. The first stage aims to cancel the effect of
zero-mean temporal noise sources, such as shot noise. The second
stage estimates the direct component, which encodes the depth, and
the third one reconstructs the transient profiles.

The aforementioned works implicitly rely on the fact that the
transient profiles can be effectively represented in a low-dimensional
space [15]. Parametric models have been suggested to model hsce.
For instance, exponentially-modified Gaussian functions were used
to model the transient responses of highly-scattering media in [17].
In [16], Rayleigh and Weibull distributions were found to bear re-
semblance to common shapes of hsce. The authors chose the Weibull
distribution to encode the global component of hsce, being the direct
component implicitly represented as a Dirac delta function. How-
ever, the subspace or union of subspaces that best represent the tran-
sient profiles remain largely unexplored. Proposed analytical models

have shown good performance, but have not been proven optimal in
terms of representation efficiency and accuracy. In this work we sup-
pose an underlying linear subspace (or union thereof) and propose a
data-driven optimization of this representation. The resulting frames
allow for a sparse representation of hsce and pave the way for a CS
formulation [18].

3. METHODOLOGY

In this section we present how we model the sensing process, seek
an efficient representation of the transient functions, and finally for-
mulate the problem inversion from a CS perspective.

3.1. Sensing Model

Without loss of generality and for coherence with prior work, we fo-
cus on correlation-based ToF cameras operated in CW mode, such
as those based on PMD technology [8]. Regardless of the operation
mode, omitting the pixel indexing for notation simplicity, measure-
ments obtained from a given ToF pixel can be modeled as samples
of the convolution

y (τ) = hcam ∗ hsce(τ), (1)

where hcam(t) is the instrument response function of the ToF cam-
era in time domain. Differently from conventional cameras, where
hcam(t) is fixed, ToF cameras allow certain programmability of
hcam(t), which yields time resolution. More specifically, in CW-
ToF it is customary to adopt the sinusoidal model

hcam,k(t; θ) = A cos (2πfkt− θ), (2)

where A is the amplitude, fk, 1 ≤ k ≤ K denotes the modulation
frequency and θ is a configurable phase shift. It is this configurable
parameter that allows for sampling over time shifts in (1). Clearly, by
acquiring measurements using two values of θ with π/2 separation,
a complex Fourier coefficient, Ffk (hsce), at the selected frequency
fk can be obtained. Thus, a set of measurements at appropriately
chosen frequencies may provide an accurate representation of hsce.
Provided that hsce is a real function, we restrict the model to the real
numbers and assume that the in-phase and quadrature components
are extracted for θ = 0 and θ = π/2, respectively. This is coherent
with PMD-based ToF modules, which use multiples of π/2, and with
the dataset in [15]. Discretizing the hsce(t) for some fine time step,
tstep, yields a vector h⃗sce ∈ Rn, with T = ntstep the considered
time domain. This also allows, in combination with (1) and (2), for
the following sensing model:

yℜk = ϕ⃗ℜ⊤
k h⃗sce, with ϕ⃗ℜ⊤

k [i] = A cos (2πfkitstep)

yℑk = ϕ⃗ℑ⊤
k h⃗sce, with ϕ⃗ℑ⊤

k [i] = A sin (2πfkitstep)
(3)

Now, stacking together the measurements, yℜk , yℑk obtained for
all K frequencies yields the following aggregated sensing model:

y⃗ = ΦΦΦh⃗sce with ΦΦΦ :=

[
ΦΦΦℜ

ΦΦΦℑ

]
,

ΦΦΦℜ :=
[
ϕ⃗ℜ⊤
k

]K
k=1

ΦΦΦℑ :=
[
ϕ⃗ℑ⊤
k

]K
k=1

(4)

The simultaneous requirements of high depth resolution and
long range translate into a large n, whereas K is limited by frame
rate requirements. Thus, 2K ≪ n and the linear system in (4) is
heavily underdetermined.



3.2. Learning an Optimal Representation

As mentioned in previous sections, the complexity of the transient
responses is limited and, therefore, they are expected to admit an
efficient representation in an appropriate subspace or union of sub-
spaces. In this work we consider that there exists a collection of rep-
resentation vectors, ψ⃗i ∈ Rn, ≤ i ≤ N , which constitutes a frame
or dictionary where the signal h⃗sce admits an s-sparse representation
with s≪ n. For generality, we consider the case of an overcomplete
dictionary, i. e., N > n. Grouping the dictionary atoms together in
a matrix, ΨΨΨ, the linear model in (4) can now be written in terms of
the unknown sparse vector of coefficients x⃗ ∈ RN :

y⃗ = ΦΦΦ ΨΨΨx⃗︸︷︷︸
h⃗sce

= AAAx⃗, with AAA = ΦΦΦΨΨΨ, ΨΨΨ :=
[
ψ⃗i

]K
i=1

(5)

Let the matrix HHHsce =
[
h⃗sce,i

]
1≤i≤M

denote a representative

set of M transient profiles, where M > N . Finding an optimal
dictionary for HHHsce means solving the following sparse dictionary
learning problem:

Ψ̂ΨΨ, X̂XX = argmin
ΨΨΨ,XXX

∥HHHsce −ΨΨΨXXX∥2F , s.t.: ∥x⃗i∥0 ≤ smax, ∀i, (6)

where XXX = [x⃗i]1≤i≤M , ∥ · ∥F denotes Frobenius norm, and smax

is an hypothesized upper bound for s. We select the following five
alternatives to solve (6): the Method of Optimal Directions (MOD)
[21], K-SVD [22], the approximate K-SVD in [23], the Online Dic-
tionary Learning (ODL) approach in [24], and the Reweighted Least
Squares Dictionary Learning Algorithm (RLS-DLA) from [25]. For
all methods, the same tight frame is used as seed and Orthogonal
Matching Pursuit (OMP) as sparse approximation method for speed.

3.3. Compressive Sensing Formulation

Once a dictionary Ψ̂ΨΨ has been learned by solving (6), the sparsity
constraint on x⃗ can be leveraged to uniquely retrieve it from y⃗. The
inverse problem to solve becomes a linearly-constrained ℓ0 mini-
mization:

ˆ⃗x = argmin
x⃗

∥x⃗∥0 subject to y⃗ = AAAx⃗ (7)

Let Σk denote the set of all k-sparse vectors in RN , then unique-
ness of the solution can only be ensured if N (AAA) ∩ Σ2s = ∅,
where N (·) denotes nullspace. Thus, given y⃗ ∈ Rm, the condition
spark (AAA) > 2s is sufficient for uniqueness, where spark (AAA) :=
min
x⃗

∥x⃗∥0 s.t.AAAx⃗ = 0. Provided thatAAA ∈ Rm×N with m≪ N , the

minimum number of measurements required to recover x⃗ ism ≥ 2s,
which means K ≥ s frequencies. In other words, K scales linearly
with s and not with n. It remains to define how these K frequencies
are selected. Inspired by [20], apart from uniform sampling (US),
we consider three non-uniform sampling (NUS) alternatives: ran-
dom sampling, both subject to a grid and gridless, and sparse rulers.
We consider optimal rulers when they exist for a givenK and perfect
rulers otherwise. For coherence with the dictionary learning stage,
we use OMP to solve (7). From the obtained ˆ⃗x and Ψ̂ΨΨ, an estimate

of the transient profile can be retrieved as ˆ⃗
hsce = Ψ̂ΨΨˆ⃗x. Finally, an

MPI-immune depth estimate is obtained from ˆ⃗
hsce via peak detec-

tion, which in its simplest form reads:

d̂ =
c

2 (̂i tstep)
, î = argmax

i

ˆ⃗
hsce[i] s.t. ˆ⃗

hsce[i] > ϵ, (8)

where c is the speed of light and ϵ is an amplitude threshold to dis-
card negligible signals. In practice, multiple peaks may be detected
to deal with reflective MPI and flying pixels at depth edges [15].

4. EXPERIMENTS AND RESULTS

In this section we evaluate the methodology in section 3. For con-
structing HHHsce ∈ Rn×M , we make use of the set of 25 transient
images of different indoor scenes from the iToF2dToF dataset [15].
Their length is n = 2000, with tstep = 33.333 ps, spanning T =
66.666 ns. This accounts for light paths of up to 20 m length, yield-
ing an unambiguous depth range of 10 m. Each transient image con-
tains 120 × 160 pixels, yielding 1.92 × 104 transient profiles per
scene. For notation simplicity, we use the position in which they
appear in the dataset as ID for the scenes. Similarly to [15], we con-
sider only 21 scenes for training, reserving four (IDs 3, 10, 12, 14)
for posterior validation purposes. From the> 4×105 available pro-
files for training, we randomly selectM = 105 and use them to train
a dictionary (Ψ ∈ Rn×N in (6)) with N = 8000 atoms using the
five methods referred in section 3.2. This yields an overcompleteness
factor of 4, coherently with prior work [24]. Pixels with negligible
signals are excluded. OMP is set to enforce smax = 16 during train-
ing. Table 1 provides the normalized sparse reconstruction RMSE
and execution times for the five learning methods considered. The
intended paralellization potential of ODL was exploited by running
32 parallel threads in independent cores, thus the inferior execution
time. The second fastest alternative is the approximate version of K-
SVD, which scores an RMSE only marginally superior than K-SVD.
The latter provides the best performance in terms of RMSE.

4.1. Sparse Representation of Transient Profiles

The relatively low RMSEs shown in Table 1 witness that the training
data could be sparsely represented with s ≤ smax = 16 nonzero co-
efficients in the learnt dictionaries. In this section we aim to provide
statistical characterizations of both the accuracy of the sparse repre-
sentations and the error that they produce when used to calculate the
depth estimate. Additionally, we study the dependency of the error
metrics with smax. The statistical characterization considers four
non-overlapping error percentiles: 0-75%, 75-85%, 85-95%, and

95-99%. The accuracy of the sparsely reconstructed ˆ⃗
hsce = Ψ̂x⃗s,

where x⃗s ∈ Σs is the s-sparse approximation of h⃗sce in Ψ̂, is eval-
uated in terms of RMSE with respect to the ground truth (GT) h⃗sce.
For computing depth errors, GT depth images are generated by ap-
plying multiple-peak detection, followed by heuristic selection, to
the original profiles in all transient images. This avoids false depth
errors arising from border effects present in the GT depth images
contained in the dataset. For coherence with prior work, the Mean
Absolute Error (MAE) is adopted to evaluate depth accuracy. RM-

SEs for the sets of ˆ⃗hsce and MAEs for the depth images are provided
in Tables 2 and 3, respectively, for the worst-performing scene in the
validation set (IDs 12). Despite K-SVD yielded minimal training
RMSE (cf. Table 1), MOD seems to generalize best, consistently
yielding minimal RMSE (bold) in Table 2 and minimal depth MAE
(bold) in Table 3 for all percentiles. The last row of Table 3 compares
to the best depth MAEs in Table II of [15].

Despite all dictionaries were trained enforcing s ≤ smax = 16,
it is of interest to study how the representation accuracy and the re-
sulting depth error vary with the s used to obtain x⃗s ∈ Σs. The
corresponding results, for the two best-performing dictionaries and
s ∈ [8, 24], are presented in Fig. 1, both in terms of RMSE of the



Method MOD K-SVD Approx. K-SVD ODL RLS-DLA
RMSE [a.u.] 1.098× 10−2 1.016× 10−2 1.405× 10−2 2.280× 10−2 5.866× 10−2

Time [s] 8.457× 103 2.376× 104 1.498× 104 6.543× 103 2.428× 105

Table 1: Normalized sparse reconstruction errors and training times obtained for each of the dictionary learning methods considered.

Dict. Learn. Norm. RMSE per Percentile ×10−5 [a.u.]
Method 0-75% 75-85% 85-95% 95-99%
MOD 0.0301 0.1914 0.2486 0.6386

K-SVD 0.0663 0.2018 0.3634 0.8074
App. K-SVD 0.0943 0.2891 0.5366 1.215

ODL 0.0697 0.2263 0.4628 1.251
RLS-DLA 0.3868 1.236 2.511 5.901

Table 2: Percentile normalized transient RMSE obtained from
sparse representations in each learnt dictionary, for the worst-
performing validation scene (ID 12).

Dict. Learn. Depth MAE per Percentile [mm]
Method 0-75% 75-85% 85-95% 95-99%
MOD 0 3.248 7.041 24.38

K-SVD 0 4.571 7.270 24.97
App. K-SVD 0.1240 5.000 8.162 26.29

ODL 0.3212 5.000 10.22 31.07
RLS-DLA 1.077 5.341 12.27 40.47

Best of [15] 7.19 20.40 32.17 71.56

Table 3: Percentile depth MAE obtained from sparse representations
in each learnt dictionary, for the worst-performing validation scene
(ID 12). The last row compares to the best depth MAEs in [15].

transient images (top row) and depth MAE (bottom row). The recon-
struction of the transient profiles is accurate for all scenes, with only
scene 25 (heavy diffuse MPI) showing comparatively lower perfor-
mance, whereas the quality of the depth reconstruction shows larger
variability among scenes. Errors are of only few mm and increase
for lower s, but no relevant improvement is observed for s > 16.

(a) MOD (b) K-SVD
Fig. 1: Evolution of the normalized RMSE of the transient profiles
(top row) and of the MAE of the depth images (bottom row) with
respect to the sparsity, s, for each of the 25 scenes.

4.2. Compressive Sensing Reconstruction

In this section we evaluate the performance in the CS scenario, in
which only a low-dimensional vector of measurements, y⃗, is avail-
able. The K fk frequencies are selected both according to US and
NUS schemes in the range (0-480 ]MHz. The reference US grid
contains Kmax = 32 sampling points with 15MHz step. On-grid
random sampling is restricted to this grid. All results are given for
the worst-performing scene (ID 12). Fig. 2 shows the evolution of
depth MAE versus δ = m/n for the last two percentiles (dashing)
and for all dictionary types (coloring). Coherently with [20], we

observe successful reconstruction over a wide range of δ for NUS
alternatives, while US fails for δ ⪅ 0.01. For the 85-95% percentile,
the MAE is steadily below 4 cm for random sampling on grid. Fig. 3
shows the evolution of depth MAE versus ρ = s/m for m = 20
(δ = 0.01). All NUS alternatives yield successful depth retrieval,
while US fails in the 85-95% percentile due to insufficient m.
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Fig. 2: Evolution of the MAE of the depth images with respect to
δ = m/n for the scene 12. Solid lines are for the 95-99% percentile
and dashed lines for the 85-95% percentile.
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Fig. 3: Evolution of the MAE of the depth images with respect to
ρ = s/m for the scene 12. Solid lines are for the 95-99% percentile
and dashed lines for the 85-95%. Color coding as in Fig. 2.

Fig. 4 shows the evolution of the RMSE of the reconstructed
transient profiles with respect to measurement SNR for m = 20 in
logarithmic scale. Beyond 50 dB the performance is limited by the
representation error rather than by noise and the curves flatten out.
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Fig. 4: Evolution of the RMSE of the transient images with respect
to SNR for the scene 12. Solid lines are for the 95-99% percentile
and dashed lines for the 85-95%. Color coding as in Fig. 2.

5. CONCLUSIONS

In this work we have dealt with the problem of robust depth estima-
tion from MPI-corrupted CW-ToF measurements. The underlying
low-complexity of the scene response functions has been leveraged
making use of learnt sparse representations. The latter have been
used to enable a CS formulation, in which the s sparse coefficients
are retrieved from m ∼ O(s) frequency measurements. Extensive
simulations confirm the validity of known sparse dictionary learning
techniques for finding an efficient representation. Despite K-SVD
yields the lowest representation error during training, ODL shows
superior performance in reconstructing transient profiles and retriev-
ing depth. The experiments also show that NUS-CW-ToF enables
transient imaging and depth retrieval from fewer measurements than
US-CW-ToF. The learnt representations do not limit transient pro-
file reconstruction below 50 dB measurement SNR. Future work in-
cludes leveraging shift-invariant transient dictionary learning.
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