Designing Transformer networks for sparse recovery of sequential data using deep unfolding

Brent De Weerdt, Yonina C. Eldar, Nikos Deligiannis

Use sparse priors to recover signals

from compressed measurements

► Compressed measurement: $\mathbf{x}_t = \mathbf{As}_t + \eta_t$, $\mathbf{A} \in \mathbb{R}^{m \times n}$ $(m \ll n), t = 1, ..., T$

Assume a sparse representation \mathbf{h}_t in some dictionary: $\mathbf{s}_t = \mathbf{D}\mathbf{h}_t$

- Assume some correlation over time: $C(\mathbf{h}_t, \mathbf{h}_{t-1})$
- Solve $\min_{\mathbf{h}_1,...,\mathbf{h}_T} \sum_t \left(\frac{1}{2} \| \mathbf{x}_t \mathbf{ADh}_t \|_2^2 + \lambda_1 \| \mathbf{h}_t \|_1 + \lambda_2 C(\mathbf{h}_t, \mathbf{h}_{t-1}) \right)$
- The final reconstructed signal is $\mathbf{s}_t^* = \mathbf{D}\mathbf{h}_t^*$

Deep unfolding Intro

Deep unfolding designs neural network models by:

- 1. Unrolling an iterative algorithm
- 2. Mapping the algorithm's (sub)steps to neural network layers
- 3. Training the resulting model on data
- Deep unfolding models have lower reconstruction errors and less iterations than the original iterative algorithm

ł

• Optimization problem:
$$\min_{\mathbf{h}} \frac{1}{2} \|\mathbf{x} - \mathbf{ADh}\|_2^2 + \lambda \|\mathbf{h}\|_1$$

Iterative Soft Thresholding Algorithm (ISTA):

$$\mathbf{h}^{(k+1)} = \phi_{\lambda/c} \left(\mathbf{h}^{(k)} + \frac{1}{c} \mathbf{D}^{\mathsf{T}} \mathbf{A}^{\mathsf{T}} \left(\mathbf{x} - \mathbf{A} \mathbf{D} \mathbf{h}^{(k)} \right) \right)$$

Deep unfolding model: Learned ISTA (LISTA)

Gregor and LeCun, "Learning fast approximations of sparse coding," ICML, 2010.

Deep unfolding RNNs

► SISTA-RNN:

$$\sum_{t} \left(\frac{1}{2} \| \mathbf{x}_t - \mathbf{A} \mathbf{D} \mathbf{h}_t \|_2^2 + \lambda_1 \| \mathbf{h}_t \|_1 + \frac{\lambda_2}{2} \| \mathbf{D} \mathbf{h}_t - \mathbf{F} \mathbf{D} \mathbf{h}_{t-1} \|_2^2 \right)$$

$$\blacktriangleright$$
 ℓ_1 - ℓ_1 -RNN

$$\sum_{t} \left(\frac{1}{2} \| \mathbf{x}_t - \mathbf{A} \mathbf{D} \mathbf{h}_t \|_2^2 + \lambda_1 \| \mathbf{h}_t \|_1 + \lambda_2 \| \mathbf{h}_t - \mathbf{G} \mathbf{h}_{t-1} \|_1 \right)$$

Reweighted-RNN

$$\sum_{t} \left(\frac{1}{2} \| \mathbf{x}_{t} - \mathbf{A} \mathbf{D} \mathbf{Z} \mathbf{h}_{t} \|_{2}^{2} + \lambda_{1} \| \mathbf{g} \circ \mathbf{Z} \mathbf{h}_{t} \|_{1} + \lambda_{2} \| \mathbf{g} \circ \left(\mathbf{Z} \mathbf{h}_{t} - \mathbf{G} \mathbf{h}_{t-1} \right) \|_{1} \right)$$

Wisdom et al., "Building recurrent networks by unfolding iterative thresholding for sequential sparse recovery," ICASSP, 2017.

Le et al., "Designing Recurrent Neural Networks by Unfolding an L1-L1 Minimization Algorithm," ICIP, 2019.

Luong et al., "Designing Interpretable Recurrent Neural Networks for Video Reconstruction via Deep Unfolding," IEEE Trans. Img. Process., 2021.

Deep unfolding for a vanilla Transformer

Optimization problem designed to unfold into a Transformer architecture:

$$\mathbf{Y} = \begin{bmatrix} \mathbf{y}_1, \dots, \mathbf{y}_N \end{bmatrix}, \ \psi(u) = \begin{cases} +\infty & \text{if } u < 0\\ 0 & \text{if } u \ge 0 \end{cases}$$
$$\min_{\mathbf{Y}} \underbrace{\sum_{i,j} - \exp\left(-\frac{1}{2} \|\mathbf{W}_a \mathbf{y}_i - \mathbf{W}_a \mathbf{y}_j\|_2^2\right) + \frac{1}{2} \|\mathbf{W}_a \mathbf{Y}\|_{\mathcal{F}}^2}_{\text{softmax self-attention}} + \underbrace{\frac{1}{2} \operatorname{Tr}\left(\mathbf{Y}^T \mathbf{W}_b \mathbf{Y}\right) + \frac{1}{2} \|\mathbf{Y}\|_{\mathcal{F}}^2 + \psi(\mathbf{Y})}_{\text{linear layer + ReLU}}$$

- Design minimization steps for each part separately
- Alternating between these two steps minimizes the total optimization problem:

$$\mathbf{Y}^{(k+1)} = \mathsf{ReLU}\left(\mathbf{W}_{b}\mathbf{Y}^{(k)}\operatorname{softmax}_{\beta}\left(\mathbf{Y}^{(k)T}\mathbf{W}_{a}\mathbf{Y}^{(k)}\right)\right)$$

Yang et al., "Transformers from an Optimization Perspective," NeurIPS, 2022.

Our deep unfolding Transformer for sparse recovery

- Incorporate priors for sequential sparse recovery
 - Model correlations across the whole video
 - Retain the sparsity constraint and data fidelity term

$$\min_{\mathbf{h}_{1},...,\mathbf{h}_{T}} \sum_{t} \underbrace{\lambda_{2} \left(\sum_{\tau} -\exp\left(-\frac{1}{2} \|\mathbf{D}\mathbf{h}_{t} - \mathbf{D}\mathbf{h}_{\tau}\|_{2}^{2} \right) + \|\mathbf{D}\mathbf{h}_{t}\|_{2}^{2}}_{\text{temporal correlations}} + \underbrace{\frac{1}{2} \|\mathbf{x}_{t} - \mathbf{A}\mathbf{D}\mathbf{h}_{t}\|_{2}^{2} + \lambda_{1} \|\mathbf{h}_{t}\|_{1}}_{\text{data fidelity and sparsity}}$$

The optimization algorithm

$$\min_{\mathbf{h}_{1},...,\mathbf{h}_{T}} \sum_{t} \underbrace{\lambda_{2} \left(\sum_{\tau} - \exp\left(-\frac{1}{2} \|\mathbf{D}\mathbf{h}_{t} - \mathbf{D}\mathbf{h}_{\tau}\|_{2}^{2}\right) + \|\mathbf{D}\mathbf{h}_{t}\|_{2}^{2}}_{\text{temporal correlations}} + \underbrace{\frac{1}{2} \|\mathbf{x}_{t} - \mathbf{A}\mathbf{D}\mathbf{h}_{t}\|_{2}^{2} + \lambda_{1} \|\mathbf{h}_{t}\|_{1}}_{\text{data fidelity and sparsity}}$$

► First part: softmax self-attention

$$\mathbf{H}^{(k+\frac{1}{2})} = \lambda_2 \mathbf{H}^{(k)} \operatorname{softmax}_{\beta} \left(\mathbf{H}^{(k)T} \mathbf{D}^T \mathbf{D} \mathbf{H}^{(k)} \right), \quad \mathbf{H} = \begin{bmatrix} \mathbf{h}_1 & \dots & \mathbf{h}_T \end{bmatrix}$$

Second part: parallel ISTA operations

$$\mathbf{h}_{t}^{(k+1)} = \phi_{\lambda_{1}/c} \left(\mathbf{h}_{t}^{(k+\frac{1}{2})} + \frac{1}{c} \mathbf{D}^{\mathsf{T}} \mathbf{A}^{\mathsf{T}} \left(\mathbf{x}_{t} - \mathbf{A} \mathbf{D} \mathbf{h}_{t}^{(k+\frac{1}{2})} \right) \right) \ \forall t$$

DUST: Deep Unfolding Sparse Transformer

► Start from:

$$\mathbf{x}_t = \mathbf{A}\mathbf{s}_t, \, \mathbf{h}_t^{(0)} = 0 \quad orall t$$

$$\mathbf{H}^{(k+\frac{1}{2})} = \lambda_2 \mathbf{H}^{(k)} \operatorname{softmax} \left(\mathbf{H}^{(k)T} \mathbf{D}^T \mathbf{D} \mathbf{H}^{(k)} \right)$$
$$\mathbf{h}_t^{(k+1)} = \phi_{\lambda_1/c} \left(\mathbf{U} \mathbf{h}_t^{(k+\frac{1}{2})} + \mathbf{V} \mathbf{x}_t \right) \quad \forall t$$

Final reconstruction:

$$\mathbf{s}_t^* = \mathbf{D}\mathbf{h}_t^{(K)}$$

Experimental results

Average video reconstruction quality (PSNR) on the Avenue, UCSD and ShanghaiTech dataset.

Average video reconstruction quality (PSNR) on the Avenue dataset for different compression rates.

	Avenue	UCSD	ST		50%	40%	30%	10%
SISTA-RNN	35.73	34.13	34.90	SISTA-RNN	41.89	39.92	37.99	32.01
ℓ_1 - ℓ_1 -RNN	36.51	34.34	35.56	ℓ_1 - ℓ_1 -RNN	42.86	40.90	38.89	32.98
Reweighted-RNN	<u>36.94</u>	<u>35.22</u>	36.03	Reweighted-RNN	<u>43.23</u>	<u>41.16</u>	<u>39.12</u>	<u>33.88</u>
ViT	36.04	34.79	35.91	ViT	39.53	38.28	37.12	33.85
Unfolded Transformer	34.36	32.94	34.25	Unfold. Transf.	39.66	37.93	36.07	32.11
DUST (proposed)	37.61	35.98	<u>35.94</u>	DUST (proposed)	43.32	41.47	39.67	34.71

Model size and computation complexity

- DUST and the other Transformer models can process videos twice as fast compared to the deep unfolding RNNs
 - More parallel computation
 - Less complex calculations
- DUST has 1.4M parameters, significantly smaller the next best performing model, reweighted-RNN (2.5M parameters)

Conclusion

- We designed a deep unfolding Transformer architecture for sparse recovery of sequential data
- This model has improved reconstruction quality and lower computational cost compared to deep unfolding RNNs
- Future work: different attention mechanisms, longer sequences, denoising, super-resolution