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Background
Bayesian Cramér-Rao bound (BCRB)
Consider a general statistical model with unknown
and random vector parameter ψ ∈ Rnψ×1, such that
the model is characterized by its prior and likeli-
hood distributions

M∗ = {x|ψ ∼ p∗(x|ψ), ψ ∼ p(ψ) : ψ ∈ Ψ ⊂ Rnψ}

For any unbiased estimator ψ̂(x), the BCRB states
that [1, 2]

Ex,ψ
{(
ψ̂(x)−ψ

)(
ψ̂(x)−ψ

)⊤}− J−1 ≥ 0 ,

where J ∈ Rnψ×nψ denotes the so-called Bayesian
Fisher Information Matrix (BFIM)

J = Ex,ψ
{(

∂

∂ψ
ln p(x|ψ)

)(
∂

∂ψ
ln p(x|ψ)

)⊤}
︸ ︷︷ ︸

JD

+Eψ
{(

∂

∂ψ
ln p(ψ)

)(
∂

∂ψ
ln p(ψ)

)⊤}
︸ ︷︷ ︸

JP

which is composed of the Fisher Information Ma-
trix JD (accounting for the information on ψ from
the data) and the prior information matrix JP (ac-
counting for the prior on ψ).
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Misspecified BCRB (MBCRB)
Assumed Model: M = {x|θ ∼ f(x|θ), θ ∼ f(θ) : θ ∈ Θ ⊂ Rnθ}
where θ ∈ Rnθ×1 denotes the unknown random parameter which the estimator is attempting to infer from
the available data x ∈ Rnx×1. Note that the assumed model M can differ from the true M∗.

Pseudotrue: θ0(ψ) = argmin
θ

D
(
p(x|ψ)||f(x,θ)

)
= argmin

θ

(
− Ex|ψ

{
ln f(x,θ)

})
,

which is slightly different from the pseudotrue parameter defined in other MCRB works [3–6], since we
introduce the prior information in the assumed model.

MBCRB: Theorem 1. Given the true model M∗ parameterized by ψ and the assumed model M pa-
rameterized by θ, the error covariance of any MS-unbiased estimator satisfies that

Ex,ψ
{(
θ̂(x)− θ0(ψ)

)(
θ̂(x)− θ0(ψ)

)⊤}− Eψ
{
∂θ0(ψ)

∂ψ

}
J−1Eψ

{
∂θ0(ψ)

∂ψ

}⊤

≥ 0 ,

Extended Biased Bound: (when θ and ψ belong to the same vector space Θ = Ψ)
Ex,ψ

{(
θ̂(x)−ψ

)(
θ̂(x)−ψ

)⊤} ≥ Ex,ψ
{
∂θ0(ψ)
∂ψ

}
J−1Ex,ψ

{
∂θ0(ψ)
∂ψ

}⊤
+ rr⊤,

where the biased term is r = θ0(ψ)−ψ.

Experiments of Linear Gaussian System Application
True Model: ψ ∼ N (µψ,Σψ), xn|ψ ∼ N (H∗ψ,Σ∗), n = 1, . . . , N
Assumed Model: θ ∼ N (µθ,Σθ), xn|θ ∼ N (Hθ,Σ), n = 1, . . . , N
Parameters Setting: Note that the above parameter can be arbitrary. In the experiments, we use
• nψ = nθ = 3, µψ = [10, 20, 5]⊤, Σψ = σ2

ψI = 0.5I

• H = h∗I and h∗ = 1, Σ∗ = σ2
∗Q, with σ2

∗ = 0.04 and Qi,j = ρ|i−j|, controller by ρ = 0.5
• The parameters of the assumed model are the same, except for those mentioned misspecified ones:
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Figure 1: RMSE vs MBCRB and BCRB Figure 2: RMSE vs biased bound on θ̂ −ψ
(µθ = [8, 18, 6]⊤ and Σ = σ2I = 0.1I)
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Figure 3: RMSE vs biased bound on θ̂ −ψ under different model misspecifications:
when varying h (left panel) and varying σ2 (right panel)

Assumptions and Derivations

Assumption 1: Ex|ψ
{

∂
∂ψ ln p(x|ψ)

}
= 0.

Assumption 2: p(ψi = ψi,min) = p(ψi =
ψi,max) = 0, where ψ ∈ Ψ = Ψ1 × · · · × Ψnψ with
Ψi ≜ [ψi,min, ψi,max] being the value range for each
ψi, i ∈ {1, . . . , nψ}, and integration limits ψi,min
and ψi,max independent of ψ.

Lemma 1: For i ∈ {1, . . . , nψ} and j ∈
{1, . . . , nθ} ∫

Ψ

θ̂j(x)
∂

∂ψi
p(x,ψ)dψ = 0

where θ̂ = (θ̂1, . . . , θ̂m)⊤ ∈ Rnθ×1 is the estimator
of θ0(ψ).

Lemma 2: Given pseudotrue θ0(ψ) =
(θ0,1(ψ), . . . , θ0,nθ (ψ))

⊤ ∈ Rnθ×1,∫
Ψ

θ0,j(ψ)
∂

∂ψi
p(x,ψ)dψ = −

∫
Ψ

∂θ0,j(ψ)

∂ψi
p(x,ψ)dψ.

With Lemma 1 and 2, we have∫∫ (
θ̂(x)− θ0(ψ)

)( ∂

∂ψ
ln p(x,ψ)

)⊤

p(x,ψ)dψdx

=

∫∫
∂θ0(ψ)

∂ψ
p(x,ψ)dψdx

Please refer to our paper for the following details
of leveraging Cauchy-Schwarz inequality and some
tricky vector operations to reach the result in The-
orem 1.

Conclusions
• This work proposes a new Bayesian pseudotrue
parameter.
• We extend the existing works on CRB-type
bounds for misspecified models to a general
Bayesian setting by deriving the MBCRB lower-
bounding Ex,ψ

{(
θ̂(x) − θ0(ψ)

)(
θ̂(x) − θ0(ψ)

)⊤}
when the prior is accounted for.
• A biased bound is derived based on MBCRB to
bound the error centered on the true parameter.
• Experiments using linear Gaussian systems
show that the proposed MCRB can lower-bound the
errors tightly at any level of misspecification,
where the traditional BCRB cannot.


