On Parametric Misspecified Bayesian Cramér-Rao bound: An application to linear/Gaussian systems

Shuo Tang (tang.shu@ece.neu.edu), Gerald LaMountain, Tales Imbiriba and Pau Closas Electrical & Computer Engineering Department, Northeastern University, Boston, MA, USA

Background

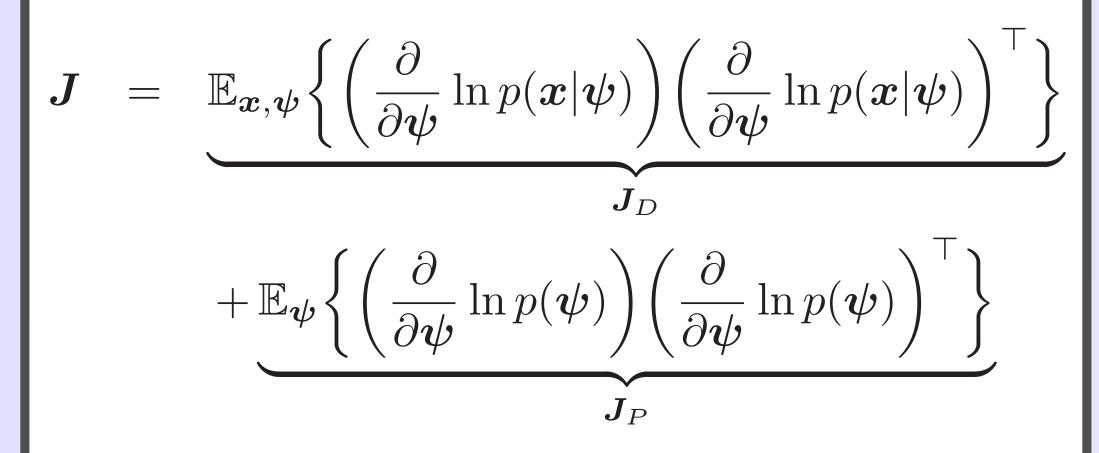
Bayesian Cramér-Rao bound (BCRB) Consider a general statistical model with unknown and random vector parameter $\boldsymbol{\psi} \in \mathbb{R}^{n_{\boldsymbol{\psi}} \times 1}$, such that the model is characterized by its *prior* and likelihood distributions

 $\mathcal{M}_* = \{ \boldsymbol{x} | \boldsymbol{\psi} \sim p_*(\boldsymbol{x} | \boldsymbol{\psi}), \ \boldsymbol{\psi} \sim p(\boldsymbol{\psi}) : \ \boldsymbol{\psi} \in \Psi \subset \mathbb{R}^{n_{\psi}} \}$

For any unbiased estimator $\hat{\psi}(\boldsymbol{x})$, the BCRB states that [1,2]

$$\mathbb{E}_{oldsymbol{x},oldsymbol{\psi}}ig\{ig(\hat{oldsymbol{\psi}}(oldsymbol{x})-oldsymbol{\psi}ig)^{ op}ig\}-oldsymbol{J}^{-1}\geqoldsymbol{0}\;,$$

Fisher Information Matrix (BFIM)



which is composed of the Fisher Information Matrix J_D (accounting for the information on ψ from the data) and the prior information matrix J_P (accounting for the *prior* on ψ).

References

- [1] S. M. Kay. Fundamentals of Statistical Signal Processing: Estimation Theory. Prentice-Hall, Inc., USA, 1993.
- [2] Harry L Van Trees. Detection, estimation, and modulation theory, part I: detection, estimation, and linear modulation theory. John Wiley & Sons, 2004
- [3] Quang H Vuong. Cramér-Rao bounds for misspecified models. Technical report, California Institute of Technology, 1986.
- Christ D Richmond and Larry L Horowitz. Parameter bounds on estimation accuracy under model misspecification. IEEE Transactions on Signal Processing, 63(9):2263–2278, 2015.
- Stefano Fortunati, Fulvio Gini, Maria S Greco, and Christ D Richmond. Performance bounds for parameter estimation under misspecified models: Fundamental findings and applications. IEEE Signal Processing Magazine, 34(6):142–157, 2017.
- [6] Christ D Richmond. On constraints in parameter estimation and model misspecification. In 2018 21st International Conference on Information Fusion (FUSION), pages 1080-1085. IEEE, 2018.

Misspecified BCRB (MBCRB)

Assumed Model: $\mathcal{M} = \{ \boldsymbol{x} | \boldsymbol{\theta} \sim f(\boldsymbol{x} | \boldsymbol{\theta}), \ \boldsymbol{\theta} \sim f(\boldsymbol{\theta}) : \ \boldsymbol{\theta} \in \Theta \subset \mathbb{R}^{n_{\theta}} \}$ where $\theta \in \mathbb{R}^{n_{\theta} \times 1}$ denotes the unknown random parameter which the estimator is attempting to infer from the available data $x \in \mathbb{R}^{n_x \times 1}$. Note that the assumed model \mathcal{M} can differ from the true \mathcal{M}_* .

$\Big| \operatorname{Pseudotrue:} \quad \boldsymbol{\theta}_0(\boldsymbol{\psi}) = \arg\min_{\boldsymbol{\theta}} \mathcal{D}\Big(p(\boldsymbol{x}|\boldsymbol{\psi}) || f(\boldsymbol{x},\boldsymbol{\theta}) \Big) = \arg\min_{\boldsymbol{\theta}} \Big(- \mathbb{E}_{\boldsymbol{x}|\boldsymbol{\psi}} \Big\{ \ln f(\boldsymbol{x},\boldsymbol{\theta}) \Big\} \Big),$

which is slightly different from the pseudotrue parameter defined in other MCRB works [3–6], since we introduce the prior information in the assumed model.

MBCRB: Theorem 1. Given the true model \mathcal{M}_* parameterized by ψ and the assumed model \mathcal{M} parameterized by $\boldsymbol{\theta}$, the error covariance of any MS-unbiased estimator satisfies that

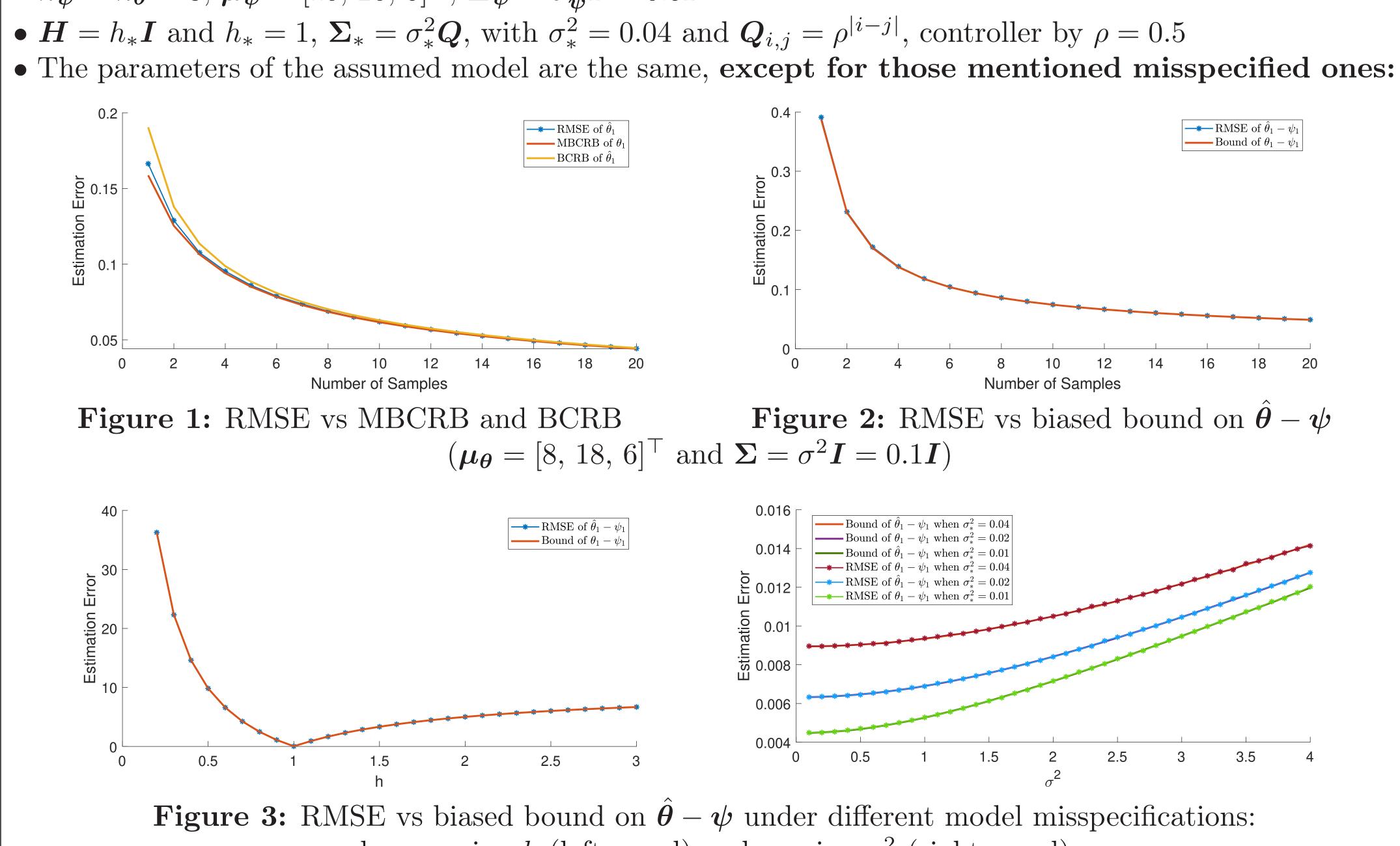
$$\mathbb{E}_{\boldsymbol{x},\boldsymbol{\psi}}\left\{\left(\hat{\boldsymbol{\theta}}(\boldsymbol{x}) - \boldsymbol{\theta}_0(\boldsymbol{\psi})\right)\left(\hat{\boldsymbol{\theta}}(\boldsymbol{x}) - \boldsymbol{\theta}_0(\boldsymbol{\psi})\right)^{\top}\right\} - \mathbb{E}_{\boldsymbol{\psi}}\left\{\right.$$

where $J \in \mathbb{R}^{n_{\psi} \times n_{\psi}}$ denotes the so-called Bayesian \square Extended Biased Bound: (when θ and ψ belong to the same vector space $\Theta = \Psi$)

 $\mathbb{E}_{oldsymbol{x},oldsymbol{\psi}}ig\{ig(\hat{oldsymbol{ heta}}(oldsymbol{x})-oldsymbol{\psi}ig)^{ op}ig\}\geq \mathbb{E}_{oldsymbol{x},oldsymbol{\psi}}ig\{rac{\partialoldsymbol{ heta}_0(oldsymbol{\psi})}{\partialoldsymbol{\psi}}ig\}oldsymbol{J}^{-1}\mathbb{E}_{oldsymbol{x},oldsymbol{\psi}}ig\{rac{\partialoldsymbol{ heta}_0(oldsymbol{\psi})}{\partialoldsymbol{\psi}}ig\}^{ op}+oldsymbol{r}oldsymbol{r}^{ op},$ where the biased term is $\boldsymbol{r} = \boldsymbol{\theta}_0(\boldsymbol{\psi}) - \boldsymbol{\psi}$.

Experiments of Linear Gaussian System Application

True Model: $\boldsymbol{\psi} \sim \mathcal{N}(\boldsymbol{\mu}_{\boldsymbol{\psi}}, \boldsymbol{\Sigma}_{\boldsymbol{\psi}}), \ \boldsymbol{x}_n | \boldsymbol{\psi} \sim \mathcal{N}(\boldsymbol{H}_* \boldsymbol{\psi}, \boldsymbol{\Sigma}_*), \ n = 1, \dots, N$ Assumed Model: $\theta \sim \mathcal{N}(\mu_{\theta}, \Sigma_{\theta}), x_n | \theta \sim \mathcal{N}(H\theta, \Sigma), n = 1, ..., N$ **Parameters Setting**: Note that the above parameter can be arbitrary. In the experiments, we use • $n_{\psi} = n_{\theta} = 3, \ \mu_{\psi} = [10, \ 20, \ 5]^{\top}, \ \Sigma_{\psi} = \sigma_{\psi}^2 I = 0.5 I$



when varying h (left panel) and varying σ^2 (right panel)

 $, \left\{ \frac{\partial \boldsymbol{\theta}_0(\psi)}{\partial \boldsymbol{\eta}} \right\} \boldsymbol{J}^{-1} \mathbb{E}_{\boldsymbol{\psi}} \left\{ \frac{\partial \boldsymbol{\theta}_0(\psi)}{\partial \boldsymbol{\eta}} \right\}^{\top} \geq \boldsymbol{0} ,$

Assumptions and Derivations

Assumption 1: $\mathbb{E}_{\boldsymbol{x}|\boldsymbol{\psi}}\left\{\frac{\partial}{\partial \boldsymbol{\psi}}\ln p(\boldsymbol{x}|\boldsymbol{\psi})\right\} = \mathbf{0}.$ Assumption 2: $p(\psi_i) = \psi_{i,\min}$ = $p(\psi_i) = p(\psi_i)$ $\psi_{i,\max}) = 0$, where $\psi \in \Psi = \Psi_1 \times \cdots \times \Psi_{n_{\psi}}$ with $\Psi_i \triangleq [\psi_{i,\min}, \psi_{i,\max}]$ being the value range for each $\psi_i, i \in \{1, \ldots, n_{\psi}\}, \text{ and integration limits } \psi_{i,\min}$ and $\psi_{i,\max}$ independent of ψ .

Lemma 1: For $i \in \{1, \ldots, n_{\psi}\}$ and $j \in \{1, \ldots, n_{\psi}\}$ $\{1,\ldots,n_{\theta}\}$

where
$$\hat{\boldsymbol{\theta}}$$
 =
of $\boldsymbol{\theta}_0(\boldsymbol{\psi})$.
Lemma
 $(\theta_{0,1}(\boldsymbol{\psi}), .$

 $heta_{0,j}(oldsymbol{\psi})$

With Ler $\int (\hat{\boldsymbol{\theta}}($ $= \iint \frac{\partial \boldsymbol{\theta}_0(\boldsymbol{u})}{\partial \boldsymbol{\psi}}$

Please refer to our paper for the following details of leveraging Cauchy-Schwarz inequality and some tricky vector operations to reach the result in Theorem 1

Conclusions

parameter.

$$\begin{aligned} &\int_{\Psi} \hat{\theta}_j(\boldsymbol{x}) \frac{\partial}{\partial \psi_i} p(\boldsymbol{x}, \boldsymbol{\psi}) \mathrm{d} \boldsymbol{\psi} = 0 \\ &= (\hat{\theta}_1, \dots, \hat{\theta}_m)^\top \in \mathbb{R}^{n_{\theta} \times 1} \text{ is the estimator} \\ & \mathbf{2}: \quad \text{Given pseudotrue} \quad \boldsymbol{\theta}_0(\boldsymbol{\psi}) \quad = \\ & \dots, \theta_{0, n_{\theta}}(\boldsymbol{\psi}))^\top \in \mathbb{R}^{n_{\theta} \times 1}, \end{aligned}$$

$$)\frac{\partial}{\partial\psi_i}p(\boldsymbol{x},\boldsymbol{\psi})\mathrm{d}\boldsymbol{\psi} = -\int_{\Psi}\frac{\partial\theta_{0,j}(\boldsymbol{\psi})}{\partial\psi_i}p(\boldsymbol{x},\boldsymbol{\psi})\mathrm{d}\boldsymbol{\psi}.$$

mma 1 and 2, we have

$$(\mathbf{x}) - \boldsymbol{\theta}_0(\boldsymbol{\psi}) \left(\frac{\partial}{\partial \boldsymbol{\psi}} \ln p(\mathbf{x}, \boldsymbol{\psi}) \right)^\top p(\mathbf{x}, \boldsymbol{\psi}) \mathrm{d} \boldsymbol{\psi} \mathrm{d} \mathbf{x}$$

 $\frac{\partial (\boldsymbol{\psi})}{\partial \boldsymbol{\psi}} p(\mathbf{x}, \boldsymbol{\psi}) \mathrm{d} \boldsymbol{\psi} \mathrm{d} \mathbf{x}$

• This work proposes a new **Bayesian pseudotrue**

• We extend the existing works on CRB-type bounds for misspecified models to a general Bayesian setting by deriving the MBCRB lowerbounding $\mathbb{E}_{\boldsymbol{x},\boldsymbol{\psi}}\left\{ \left(\hat{\boldsymbol{\theta}}(\boldsymbol{x}) - \boldsymbol{\theta}_0(\boldsymbol{\psi})\right) \left(\hat{\boldsymbol{\theta}}(\boldsymbol{x}) - \boldsymbol{\theta}_0(\boldsymbol{\psi})\right)^{\top} \right\}$ when the *prior* is accounted for.

• A **biased bound** is derived based on MBCRB to bound the error centered on the **true parameter**. • Experiments using **linear Gaussian systems** show that the proposed MCRB can lower-bound the

errors tightly at any level of misspecification, where the traditional BCRB cannot.