

QUANTPIPE: APPLYING ADAPTIVE POST-TRAINING QUANTIZATION FOR DISTRIBUTED TRANSFORMER PIPELINES IN DYNAMIC EDGE ENVIRONMENTS

Haonan Wang¹², Connor Imes², Souvik Kundu¹³, Peter A. Beerel¹², Stephen P. Crago¹², and John Paul Walters²

¹University of Southern California, Los Angeles, CA, USA

²USC Information Sciences Institute, Arlington, VA, USA

³Intel Labs, San Diego, CA, USA

BACKGROUND AND MOTIVATION

- AI faces a growing problem in the Transformer era
- High demands on local inference
 - E.g., run ChatGPT in your house
 - Concerns of privacy or connectivity to Internet
- Pushing these increasingly large models to the edge adds additional challenges
 - Resources/power constrains of Edge devices
- Pipeline parallelism can be employed to parallelize large-scale transformer models across devices

Fig. Illustration of the pipeline parallelism paradigm

BACKGROUND AND MOTIVATION

QUANTPIPE OVERVIEW

Q: How to compress communication?

A: Post-training Quantization (PTQ).

Challenges of applying PTQ:

- Where to do PTQ?
- How to do PTQ?
- What is the accuracy loss?

Property of PTQ:

- We insert PTQ only at the boundary of the pipeline where the model is partitioned, to lower the impact of quantization
- Experimental results show PTQ is suitable for the PipeEdge System

How to do PTQ?

- Analytical Clipping for Integer Quantization (ACIQ)^[1]
 - > A PTQ method for CNN models
 - Clip the outliers to significantly improve accuracy
 - Decide the best clip range that minimizes the mean square error (MSE)
- Applying PTQ to Visual Transformer (ViT) models
 - Two types of activation distribution
 - Mismatch of distribution estimation for real data

Fig. Distribution of the original data (top), after naive PTQ (middle), or after PTQ with ACIQ (bottom) from the ViT-Base model partitioned after 4th (left) and 6th (right) block.

[1] Banner, Ron, Yury Nahshan, and Daniel Soudry. "Post training 4-bit quantization of convolutional networks for rapid-deployment." *Advances in Neural Information Processing Systems* 32 (2019).

Directed-search ACIQ (DS-ACIQ):

- For better estimation of the data distribution
- Search direction is determined by the peak of histogram curve
- Further decrease the MSE by ~50%
- Only incur < 1% computation overhead
- Accuracy of PTQ w/ DS-ACIQ (PDA):

 Table 1: Average ViT-Base model accuracy with ImageNet.

	32bit	16bit	8bit	6bit	4bit	2bit
PTQ		80.26%	75.74%	43.03%	30.29%	0.44%
ACIQ	80.23%	80.03%	79.35%	78.87 %	76.46%	54.97%
PDA		78.94%	78.72%	78.21%	77.34%	70.82 %

Fig. Comparison of ACIQ and DS-ACIQ

Adaptive PTQ with DS-ACIQ (Adaptive PDA):

- Implement PDA in our QuantPipe system:
 - > monitor the output bandwidth $B_{k,t}$ of stage k at inference iteration t
 - > estimate the bitwidth $q_{k,t+1}$ required to achieve the target throughput R

$$q_{k,t+1} = 32/2^{\lceil \log(\frac{V_{k,t} \times 32/q_{k,t}}{S/R \times B_{k,t}}) \rceil}$$

where $V_{k,t}$ represents the volume of quantized data under $q_{k,t}$ and S denotes the microbatch size

- In the real implementation:
 - QuantPipe monitors the bandwidth every 50 batches
 - Switch quantization bitwidth at runtime to recover system performance

EXPERIMENTAL EVALUATIONS

Experimental Settings:

- Hardware Testbed:
 - > An Edge cluster with 6 NVIDIA Jetson AGX Orin devices
 - Each device has a 12-core ARM CPU, a 1792-core GPU, and runs Linux kernel 5.10.65-tegra.
 - IGbps Ethernet connection between devices
- Software:
 - > We implement our QuantPipe on top of the PipeEdge, a distributed edge computing framework^[2]
 - ➢ using Python 3.8 and PyTorch 1.12.
- Bandwidth Control:
 - > We simulate the network fluctuation using Linux traffic control tools (tc).
- Deep Learning Model:
 - Visual Transformer (ViT)

[2] Y. Hu et al., "PipeEdge: Pipeline Parallelism for Large-Scale Model Inference on Heterogeneous Edge Devices," 2022 25th Euromicro Conference on Digital System Design (DSD), Maspalomas, Spain, 2022, pp. 298-307, doi: 10.1109/DSD57027.2022.00048.

Information Sciences Institute

School of Engineering

Stage Bandwidth

Quantization Bitwidth

Stage Performance

32 to 16 bit bring about 2X improvement

600

to achieve performance target

Model Accuracy ^S 80 ^S 80 ^S 80 ^S 80 ^S 90 ^S 90

School of Engineering

Information Sciences Institute

400

200

Phase 1

400

0

0

Phase 0

Phase 0

Phase 1

.....

Batch No.

target output rate

800

Quantization Bitwidth

Stage Performance

Model Accuracy

Quantization Bitwidth

Stage Performance

USC Viterbi School of Engineering

800

Phase 4

Batch No.

Demo Devices

Thank You

Any further questions are welcome please contact: <u>haonan.wang@usc.edu</u>

