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BACKGROUND AND MOTIVATION
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Figure reference: A. Gholami, AI and the Memory Wall, Medium

• AI faces a growing problem in the Transformer era
• High demands on local inference

 E.g., run ChatGPT in your house
 Concerns of privacy or connectivity to Internet

• Pushing these increasingly large models to the edge 
adds additional challenges
 Resources/power constrains of Edge devices

• Pipeline parallelism can be employed to parallelize 
large-scale transformer models across devices

Fig. Illustration of the pipeline parallelism paradigm 
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BACKGROUND AND MOTIVATION
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Property of the Edge System:

 Unstable Connection
• Network fluctuation
• Signal blocking
• Movement

 Low-speed protocols
• Bluetooth
• LP-WAN
• …

Bottleneck
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QUANTPIPE OVERVIEW
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Q: How to compress communication? A: Post-training Quantization (PTQ).
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ADAPTIVE POST-TRAINING QUANTIZATION
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Challenges of applying PTQ:
 Where to do PTQ?

 How to do PTQ?

 What is the accuracy loss?

node 1 node 2 node 3

PTQ

Property of PTQ:

• We insert PTQ only at the boundary of the pipeline 

where the model is partitioned, to lower the impact 

of quantization

• Experimental results show PTQ is suitable for the 

PipeEdge System
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ADAPTIVE POST-TRAINING QUANTIZATION

How to do PTQ?

• Analytical Clipping for Integer Quantization 

(ACIQ) [1]

 A PTQ method for CNN models

 Clip the outliers to significantly improve accuracy

 Decide the best clip range that minimizes the mean 

square error (MSE)

• Applying PTQ to Visual Transformer (ViT) models

 Two types of activation distribution

 Mismatch of distribution estimation for real data

[1] Banner, Ron, Yury Nahshan, and Daniel Soudry. "Post training 4-bit quantization of convolutional 
networks for rapid-deployment." Advances in Neural Information Processing Systems 32 (2019).

Fig. Distribution of the original data (top), after naive PTQ (middle), 
or after PTQ with ACIQ (bottom) from the ViT-Base model 
partitioned after 4th (left) and 6th (right) block.
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Directed-search ACIQ (DS-ACIQ):

• For better estimation of the data distribution

• Search direction is determined by the peak of 

histogram curve

• Further decrease the MSE by ~50%

• Only incur < 1% computation overhead

• Accuracy of PTQ w/ DS-ACIQ (PDA):
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Fig. Comparison of ACIQ and DS-ACIQ

search direction



Information Sciences Institute

Adaptive PTQ with DS-ACIQ (Adaptive PDA):

• Implement PDA in our QuantPipe system:

 monitor the output bandwidth Bk,t of stage k at inference iteration t

 estimate the bitwidth qk,t+1 required to achieve the target throughput R

where Vk,t represents the volume of quantized data under qk,t

and S denotes the microbatch size

• In the real implementation:

 QuantPipe monitors the bandwidth every 50 batches

 Switch quantization bitwidth at runtime to recover system performance 
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EXPERIMENTAL EVALUATIONS
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Experimental Settings:
• Hardware Testbed: 

 An Edge cluster with 6 NVIDIA Jetson AGX Orin devices
 Each device has a 12-core ARM CPU, a 1792-core GPU, and runs Linux kernel 5.10.65-tegra. 
 1Gbps Ethernet connection between devices

• Software:
 We implement our QuantPipe on top of the PipeEdge, a distributed edge computing framework[2]

 using Python 3.8 and PyTorch 1.12.
• Bandwidth Control:

 We simulate the network fluctuation using Linux traffic control tools (tc). 
• Deep Learning Model:

 Visual Transformer (ViT)

[2] Y. Hu et al., "PipeEdge: Pipeline Parallelism for Large-Scale Model Inference on Heterogeneous Edge Devices," 2022 25th 
Euromicro Conference on Digital System Design (DSD), Maspalomas, Spain, 2022, pp. 298-307, doi: 10.1109/DSD57027.2022.00048.
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Experimental results: Adaptiveness
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Experimental results: Adaptiveness
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do bandwidth control to 400 Mbps 
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Experimental results: Adaptiveness

Stage Bandwidth
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check bandwidth condition every 50 batches
perform bitwidth switching: 32 -> 16 bit
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32 to 16 bit bring about 2X improvement
to achieve performance target

Set bandwidth to 400 Mbps 

no accuracy loss under 16-bit PTQ
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Experimental results: Adaptiveness

Stage Bandwidth
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Set bandwidth to 50 Mbps 

Phase 2 Phase 2

Phase 2 Phase 2

check bandwidth condition every 50 batches
perform bitwidth switching: 16 -> 2 bit

16 to 2 bit bring about 8X improvement
to achieve performance target around 5% acc loss under 2-bit PTQ

Set bandwidth to 200 Mbps 
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Experimental results: Adaptiveness

Stage Bandwidth
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perform bitwidth switching: 
2 -> 6 -> 8 bit

To not waste performance
choose bitwidth closest to 
target rate accuracy recover 

back to no loss 
under 8-bit PTQ

Set  bandwidth to 200 Mbps 
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Experimental results: Adaptiveness

Stage Bandwidth
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Demo Devices
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Thank You

Any further questions are welcome
please contact: haonan.wang@usc.edu
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