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Circumplex Model of Affect

Problem: estimating
regression values in
the valence-arousal
space based on videos

Valence denotes the
range of emotions
from very sad
(negative) to very
happy (positive)

Arousal reflects the
energy or intensity of
emotions from very
passive to very active
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A-V Fusion for Emotion Recognition

Audio (A) and Visual (V) are the widely used contact-free
modalities for emotion recognition

A and V channels provide complementary information

Fusion of A and V channels is expected to outperform
uni-modal approaches

In this paper we focus on this scenario:
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Challenges for A-V Fusion

How to extract efficient multi-modal feature representation of
A-V modalities from videos?

How to effectively leverage the complementary information of
A-V modalities?

How to handle a wide range of variations in V: facial
expressions due to pose, identity bias, occlusion, etc.?

How to handle a wide range of variations in A: vocal
expressions due to speaker identity bias, background noise,
etc?
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A-V Fusion Approaches for Dimensional Emotion
Recognition

[Tzirakis et al., 2017] extract A and V features from
Resnet-50 and 1D CNN respectively, which is concatenated
and fed to LSTM

[Tzirakis et al., 2021] investigate various fusion strategies
along with attention mechanisms including self-attention.

[Parthasarathy and Sundaram, 2021] explore transformers
with cross-modal attention, where cross-attention is
integrated with self-attention

[Praveen et al., 2023] explore joint cross-attentional fusion to
jointly leverage the intra and inter-modal relationships across
A and V modalities
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Limitations of SOA Approaches

Most of the existing approaches focus on modeling the
intra-modal relationships

The inter-modal relationships are not explored to capture the
complementarity of A-V modalities

Though attention models have been explored with
transformers, they fail to capture the complementary
relationship of A-V modalities
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Overall Framework

The backbones of A and V models are trained and obtained
separately to produce deep features

These A and V features are used to train the proposed A-V
fusion model
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Recursive Joint Cross Attentional A-V Fusion

Figure: Block diagram of the proposed recursive joint attention model
with Bi-directional LSTMs.
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Recursive Joint Cross Attentional A-V Fusion

Joint Cross Correlation matrix

C a = tanh
(

X⊤
a W jaJ√

d

)
and C v = tanh

(
X⊤

v W jvJ√
d

)
where W ja,W jv : learnable parameters

X v : deep features of V modality of given video sequence
X a: deep features of A modality of given video sequence
J : deep features of A modality of given video sequence

d : feature dimension of concatenated features

Joint Cross Attention Weights

Ha = ReLu(X aW caC a)
Hv = ReLu(X vW cvC v)

where W ca,W cv : learnable parameters
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Recursive Joint Cross Attentional A-V Fusion

Attended features

X att,a = W haHa + X a

X att,v = W hvHv + X v

where W ha,W hv : learnable parameters

Recursive Attended features

The recursive joint cross-attention iteratively refines the A-V
features, producing more robust A-V feature representations

X (t)
att,a = W (t)

ha H(t)
a + X (t−1)

a

X (t)
att,v = W (t)

hv H(t)
v + X (t−1)

v

where W (t)
ha ,W hv

(t)
: learnable parameters
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Experimental Setup

Datasets: Affwild2 and Fatigue (private) datasets

Partitions of ABAW3 challenge [Kollias, 2022] of Affwild2:
training, validation, and testing partitions have 341, 71, and
152 videos respectively

Fatigue has 27 videos captured from 18 participants, suffering
from degenerative diseases inducing fatigue

Performance Measure:

Concordance Correlation Coefficient (CCC)
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Ablation Study [Affwild2]

Backbones: R3D and Resnet18 for V and A (spectrograms)
modalities respectively to obtain the deep features

Table: Performance of our approach with components of BLSTM
and recursive attention on Affwild2 data

Method Valence Arousal

JA Fusion w/o recursion

Fusion w/o U-BLSTM 0.670 0.590

Fusion w/o J-BLSTM 0.691 0.646

Fusion w/ U-BLSTM and J-BLSTM 0.715 0.688

JA Fusion w/ recursion

JA Fusion with t = 2 0.721 0.694

JA Fusion with t = 3 0.706 0.652

JA Fusion with t = 4 0.685 0.601
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Comparison with state-of-the-art approaches

Table: CCC performance of the proposed and state-of-the-art
methods for A-V fusion on Affwild2 data

Method Type of Fusion Valence Arousal

Validation Set

Kuhnke et al. [Kuhnke et al., 2020] Feature Concatenation 0.493 0.613

Zhang et al. [Zhang et al., 2021] Leader Follower Attention 0.469 0.649

Rajasekhar et al [Rajasekhar et al., 2021] Cross Attention 0.541 0.517

Rajasekhar et al. [Praveen et al., 2022] Joint Cross Attention 0.670 0.590

Ours Recursive JA + BLSTM 0.721 0.694

Test Set

Meng et al. [Meng et al., 2022] LSTM + Transformers 0.606 0.596

Vincent et al. [Karas et al., 2022] LSTM + Transformers 0.418 0.407

Rajasekhar et al [Praveen et al., 2022] Joint Cross Attention 0.451 0.389

Ours Recursive JA + BLSTM 0.467 0.405
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Results with Fatigue (private) Data

Table: CCC performance on the Fatigue dataset.

Method Fatigue Level

Audio only (2D-CNN: Resnet18) 0.312

Visual only (3D-CNN: R3D) 0.415

Feature Concatenation 0.378

Cross Attention [Rajasekhar et al., 2021] 0.421

Recursive JA + BLSTM (Ours) 0.447
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Conclusion

A recursive joint cross attentional A-V fusion model is
proposed for dimensional emotion recognition to effectively
capture the intra- and inter-modal relationships across A and
V modalities.

Joint cross-attention is employed in a recursive fashion, while
still leveraging the intra-modal relationships using BLSTMs.

Extensive set of experiments conducted on Affwild2 and
Fatigue (private) datasets shows that the proposed approach
outperforms SOTA
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