A Contrastive Knowledge Transfer Framework for Model Compression and Transfer Learning (Oral Session in ICASSP 2023)

Kaiqi Zhao, Yitao Chen, Ming Zhao

Arizona State University

http://visa.lab.asu.edu

Virtualized Infrastructures, Systems, & Applications

Model Compression & Transfer Learning

- Deep learning is moving towards edge
 - DNNs are resource-demanding
 - But edge devices are resource-constrained
- DNN training requires sufficient labeled data
 - But many real-world scenarios do not have sufficient labeled data

Model Compression

Transfer Knowledge

Target Domain (Unavailable labels)

Knowledge Transfer

- Knowledge Transfer (KT)
 - \circ Minimize the difference of the conditionally independent output distributions
 - Transfer soft logits (softmax outputs)
 - Knowledge Distillation (KD)
 - \circ Transfer intermediate representations
 - Attention Transfer (AT)

- Limitations
 - o Overlook the structural knowledge from the intermediate representations
 - High-dimension
 - Crucial for guiding gradient updates
 - \circ Lack a commonly agreed theory \rightarrow Challenging to generalize
 - \circ Fail to consistently outperform the conventional KD

Contrastive Knowledge Transfer Framework (CKTF)

- Optimization objective
 - $L = \gamma L_{CE}(Y, S_h) + L_{CKT}(\{T_m\}_{m=1}^M, \{S_m\}_{m=1}^M, T_h, S_h) + \theta L_{Distill}(T_h, S_h)$
 - Cross entropy loss with the ground truth labels: $L_{CE}(Y, S_h), \gamma \in [0, 1]$
 - Contrastive loss: $L_{CKT}({T_m}_{m=1}^M, {S_m}_{m=1}^M, T_h, S_h)$
 - Distillation loss from other KT methods: $L_{Distill}(T_h, S_h), \theta \in [0, 1]$

Process Intermediate Representations

• Intermediate representations

- Different dimensions between the teacher and student
- $_{\odot}$ Huge feature dimensions \rightarrow Memory issues or Increase the training time
 - E.g., One intermediate representation of ResNet-50 on ImageNet: about 8.39 millions

• Process

- Apply an average pooling \rightarrow Reduce features $\bar{S}_m = AvgPool(S_m), \bar{T}_m = AvgPool(T_m)$
- Apply a reshape function \rightarrow Reduce space from 4D to 2D $H_m^S = h(\bar{S}_m), H_m^T = h(\bar{T}_m)$
- \circ Apply the projection network \rightarrow Same dimensions
 - Linear v.s. Multi-Layer Perceptron (MLP)

 $G_m^S = g(H_m^S), G_m^T = g(H_m^T)$

Construct Contrastive Loss

- Representation pairs
 - Positive representation pairs $(G_{m,i}^S, G_{m,i}^T)$
 - Outputs from the same input sample x_i
 - Negative representation pairs $(G_{m,i}^S, G_{m,j}^T)$ Push Apart
 - Outputs from two different input samples x_i, x_j

Positive Pairs

• Contrastive loss on intermediate representations

 \circ Maximize the lower bound of the mutual information

$$L_{MCKT} \left(G_m^S, G_m^T \right) = -E \left[log \frac{f \left(G_{m,i}^S, G_{m,i}^T \right)}{\sum_{j=1}^N f \left(G_{m,i}^S, G_{m,j}^T \right)} \right]$$
$$f \left(G_{m,i}^S, G_{m,i}^T \right) = \frac{\exp(G_{m,i}^S, G_{m,i}^T / \tau)}{\exp\left(G_{m,i}^S, \frac{G_{m,i}^T}{\tau} \right) + N/N_d}$$

We are the first to construct multiple contrastive objectives on the intermediate representations of image classification models for KT

Construct Contrastive Loss (Cont.)

• Contrastive loss on penultimate representations

$$L_{PCKT}(S_{h}, T_{h}) = -E\left[\log\frac{f(S_{h,i}, T_{h,i})}{\sum_{j=1}^{N} f(S_{h,i}, T_{h,j})}\right]$$

- Contrastive loss
 - $\circ~$ Weighted sum of L_{MCKT} and L_{PCKT}

Contrastive loss on penultimate representations

$$L_{CKT} = \alpha_1 \sum_{m=1}^{M} L_{MCKT} \left(G_m^S, G_m^T \right) + \alpha_2 L_{PCKT} \left(S_h, T_h \right)$$

Contrastive loss on intermediate representations

Kaiqi Zhao

Model Compression Results

• Outperform

• KD by 0.5% to 2.41%

• Other KT by 0.04% to 11.59%

• CRD by 0.04% to 0.97%

• W/o KT 0.95% to 4.41%

DataSet	CIFAR-100						Tiny-ImageNet				
Model			D N . 50	D N (110	D N (110	D NI (20*4	VGG 12	NGG 10	VOC 16	D N (24	D N (50
Teacher	WRN-40-2	WRN-40-2	ResNet-56	ResNet-110	ResNet-110	ResNet-32*4	VGG-13	VGG-19	VGG-16	ResNet-34	ResNet-50
Student	WRN-16-2	WRN-40-1	ResNet-20	ResNet-20	ResNet-32	ResNet-8*4	VGG-8	VGG-8	VGG-11	ResNet-10	ResNet-10
Compression Ratio	3.21	3.96	3.10	6.24	3.67	6.03	2.39	5.01	1.59	4.28	4.78
Baselines			50 0 4			T O 10			<1 0 7	(7 0 0	
Teacher	75.61	75.61	72.34	74.31	74.31	79.42	74.64	61.62	61.35	65.38	65.34
Student (w/o KT)	73.26	73.54	69.06	69.06	71.14	72.5	70.36	54.61	58.60	58.01	58.01
Method											
KD [2]	74.92	73.54	70.66	70.67	73.08	73.33	72.98	55.55	62.51	58.92	58.63
FitNet [3]	73.58 (↓)	72.24 (↓)	69.21 (↓)	68.99 (↓)	71.06 (↓)	73.50 (↑)	71.02 (↓)	55.24 (↓)	59.08 (↓)	58.22 (↓)	57.76 (↓)
AT [4]	74.08 (↓)	72.77 (↓)	70.55 (↓)	70.22 (↓)	72.31 (↓)	73.44 (↑)	71.43 (↓)	53.55 (↓)	61.40 (↓)	59.16 (†)	58.92 (†)
SP [5]	73.83 (↓)	72.43 (↓)	69.67 (↓)	70.04 (↓)	72.69 (↓)	72.94 (↓)	72.68 (↓)	55.09 (↓)	61.61 (↓)	55.91 (↓)	57.17 (↓)
CC [6]	73.56 (↓)	72.21 (↓)	69.63 (↓)	69.48 (↓)	71.48 (↓)	72.97 (↓)	70.71 (↓)	54.87 (↓)	58.34 (↓)	57.18 (↓)	57.36 (↓)
VID [7]	74.11 (↓)	73.3 (\)	70.38 (↓)	70.16 (↓)	72.61 (↓)	73.09 (↓)	71.23 (↓)	54.94 (↓)	60.07 (↓)	58.53 (↓)	57.65 (↓)
RKD [8]	73.35 (↓)	72.22 (↓)	69.61 (↓)	69.25 (↓)	71.82 (↓)	71.90 (↓)	71.48 (↓)	54.13 (↓)	59.96 (↓)	57.35 (Ļ)	57.05 (↓)
PKT [9]	74.54 (↓)	73.45 (↓)	70.34 (↓)	70.25 (↓)	72.61 (↓)	73.64 (↑)	72.88 (↓)	55.35 (↓)	60.46 (↓)	58.41 (↓)	58.66 (↑)
AB [10]	72.50 (↓)	72.38 (↓)	69.47 (↓)	69.53 (↓)	70.98 (↓)	73.17 (↓)	70.94 (↓)	50.31 (↓)	55.65 (↓)	57.22 (Ļ)	58.05 (↓)
FT [1]]	73.25 (↓)	71.59 (↓)	69.84 (↓)	70.22 (↓)	72.37 (↓)	72.86 (↓)	70.58 (↓)	53.65 (1)	58.84 (↓)	56.22 (↓)	56.48 (↓)
FSP [12]	72.91 (↓)	N/A	69.95 (↓)	70.11 (↓)	71.89 (↓)	72.62 (↓)	70.23 (↓)	N/A	N/A	N/A	N/A
NST [13]	73.68 (↓)	72.24 (↓)	69.60 (↓)	69.53 (↓)	71.96 (↓)	73.30 (↓)	71.53 (↓)	51.08 (↓)	58.47 (↓)	59.23 (↑)	47.83 (↓)
CRD [14]	75.48 (↑)	74.14 (↑)	71.16 (↑)	71.46 (↑)	73.48 (↑)	75.51 (↑)	73.94 (1)	56.99 (↑)	62.04 (↓)	60.02 (↑)	59.31 (1)
CKTF	75.85 (†)	74.49 (†)	71.20 (†)	71.80 (†)	73.84 (†)	75.74 (†)	74.31 (†)	57.57 (†)	63.01 (†)	60.39 (†)	59.42 (†)
CRD+KD [14]	75.64 (1)	74.38 (1)	71.63 (↑)	71.56 (↑)	73.75 (1)	75.46 (1)	74.29 (1)	58.09 (1)	63.66 (1)	61.99 (1)	61.26 (1)
CKTF+KD	75.89 (†)	74.94 (†)	71.86 (†)	71.66 (†)	74.07 (†)	75.97 (†)	74.55 (†)	58.76 (†)	63.97 (†)	62.31 (†)	61.51 (†)

Model Compression Results (Cont.)

• Incorporate KT methods

- Improve existing KT works by 0.89% to 3.02%
- $\circ~$ Provide a generalized agreement behind knowledge transfer

	$ \begin{array}{c} \mathrm{CKTF} \\ +\mathrm{FitNet} \end{array} $	$\begin{array}{c} \mathrm{CKTF} \\ +\mathrm{AT} \end{array}$	$\begin{array}{c} \mathrm{CKTF} \\ +\mathrm{SP} \end{array}$	$\begin{array}{c} \mathrm{CKTF} \\ +\mathrm{CC} \end{array}$	$\begin{array}{c} \mathrm{CKTF} \\ +\mathrm{VID} \end{array}$	$\begin{array}{c} \mathrm{CKTF} \\ +\mathrm{RKD} \end{array}$	$\begin{array}{c} \mathrm{CKTF} \\ \mathrm{+PKT} \end{array}$	$\begin{array}{c} \mathrm{CKTF} \\ \mathrm{+AB} \end{array}$	$\begin{array}{c} \mathrm{CKTF} \\ +\mathrm{FT} \end{array}$	$\begin{array}{c} \text{CKTF} \\ +\text{NST} \end{array}$
T: ResNet- 32×4 S: ResNet- 8×4 (CIFAR-100)	73.18 (1.68 ↑)	74.92 (1.48 ↑)	75.30 (2.36 \uparrow)	75.86 (2.89 \uparrow)	75.43 (2.34 \uparrow)	74.92 (3.02 ↑)	75.82 (2.18 \uparrow)	75.38 (2.21 ↑)	75.39 (2.53 ↑)	75.08 (1.78 ↑)
T: VGG-19 S: VGG-8 (Tiny-ImageNet)	56.19 (0.95 ↑)	55.33 (1.78 ↑)	56.22 (1.13 ↑)	55.99 (1.12 \uparrow)	56.34 (1.4 \uparrow)	55.96 (1.83 \uparrow)	$56.82 (1.47 \uparrow)$	52.63 (2.32 ↑)	56.39 (2.74 ↑)	51.97 (0.89 \uparrow)

Transfer Learning Results

- Tiny-ImageNet (Labeled) \rightarrow STL-10 (Unlabeled)
- Comparison with KD and CRD
 - Converge speed: Faster
 - $\circ~$ Final Top-1 accuracy: Outperform by 0.4% to 4.75%

Kaiqi Zhao

Conclusions and Future Work

Conclusions

- Enable the transfer of high-dimension structural knowledge by optimizing multiple contrastive objectives across the intermediate representations
- Provide a generalized agreement to existing KT methods and increase their accuracy significantly by deriving them as specific cases of CKTF
- Outperform the existing KT works by 0.04% to 11.59% in model compression and by 0.4% to 4.75% in transfer learning

• Future work

- Investigate the effectiveness of CKTF in ensemble knowledge transfer
- Study the effectiveness of CKTF in large-scale language model compression

Acknowledgement

- National Science Foundation

 Awards CNS-1955593, OAC-2126291
- VISA Lab @ ASU

