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Background

According to the International Diabetes Federation, 463 million adults world-

wide have diabetes [1]. Glucose management is a critical component of dia-

betes care. Continuous glucose monitoring (CGM) is a technology that enables

patients to track their glucose levels at short regular intervals. Coupled with

a predictive model, CGM can help people with diabetes manage their blood

glucose levels either by providing feedback or as a part of artificial pancreas

(AP) that can regulate blood glucose automatically.

Main limitation of the models: poor uncertainty quantification or poor distri-

butional fit.

Toy example

Data generation: consider a toy example, where the data is generated following:

y ∼ N (µ, Σ)

µ1:n ∼ N (0, In) µn:2n ∼ 1
2
N (0, In) + 1

2
N (1, In).

Why is it relevant to the CGM data?

1. Patients typically adhere to daily schedules (periodicity).

2. Fixed part corresponds to fixed portions of the schedule.

3. Mixture part corresponds to the variable portion of the schedule.

Setup: given past observations, y1:t, we want to form a predictive distribu-

tion p(yt:tl
|y1:t). Our training data consists of randomly subsampled chunks:

{y1:t, yt:t+l}.
We consider 2 models:

1. Transformer (DL) trained with MSE ⇔ additive Gaussian assumption on the

noise,

2. Transformer (DL) trained with our infinite mixture model (IMM) objective.
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Figure 1. Top: model trained with MSE, bottom: our model trained with IMM.

Our algorithm

We change model loss by conditioning on latent variables z:

yt:t+l|y1:t, z ∼ N (µ̂, σ̂2Il) (µ̂, σ̂2) = fθ(y1:t|z) z ∼ pz.

We optimize model parameters θ to minimize negative log-likelihood:

θ? = arg min
(

− log
∫

p(yt:t+l|y1:t, z)p(z)dz

)
.

During training, we approximate the integral using Monte Carlo, which amount

to several stochastic passes through the network.

During inference, we form the predictive distribution as a finite mixture using

the stochastic passes:

p(yt:t+l|y1:t) ≈ 1
n

n∑
1

N (µ̂i, σ̂2
i Il) (µ̂i, σ̂2

i ) = fθ(y1:t|zi) zi ∼ pz.

Overall, the computational cost grows linearly with the number of estimated

components.

CGM Prediction
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Figure 2. Predictive distribution for a sample of CGM curves based on IMM.

Key takeaway: The effect of unobserved variables on future glucose trajectories

presents a challenge to traditional approaches for uncertainty quantification.

We propose a novel approach that explicitly incorporates the impact of latent

covariates on glucose dynamics, resulting in accurate uncertainty quantification.

Glucose data description

We use a publicly available CGM data set [2], which contains information on

glucose levels of 38 subjects tracked continuously throughout multiple disjoint

intervals with the measurement frequency of 5 minutes. Similar to the previous

studies, we apply the following pre-processing steps:

1. Interpolation of small gaps;

2. Drop readings where measurements fluctuate by more than 40 mg/dl in 5

minutes;

3. Split into train / validation / test in chronological order in 20:1:1 proportion.

Total: 399,302 measurements with 30 uninterrupted sequences per subject.

Results

Model Full Event Hypo Hyper Likelihood

ARIMA 9.85 / 17.65 8.91 / 19.86 19.94 / 14.53 8.51 / 22.17 -14.93

RF:Rec 9.04 / 17.15 8.97 / 20.36 18.84 / 12.43 8.68 / 23.41 -14.58

RF:MO 10.22 / 18.27 8.61 / 19.90 21.64 / 17.36 7.99 / 21.58 -15.34

PolySeqMO 8.55 / 15.68 8.27 / 18.81 22.86 / 21.87 6.77 / 18.30 -15.61

RNN 8.17 / 15.67 8.29 / 19.37 18.72 / 16.26 6.99 / 19.22 -13.50

TFT 7.80 / 15.78 8.03 / 18.23 16.23 / 14.62 6.87 / 18.98 –

Our: IMM 7.78 / 15.40 7.89 / 17.85 15.75 / 14.03 7.08 / 19.58 -2.67

Our: Gaussian 7.82 / 14.73 7.93 / 18.62 18.28 / 13.55 6.81 / 18.94 -12.82

Table 1. APE/RMSE for 60-minute prediction window (Full), hypoglycemia,

hyperglycemia, and event (hypo-or hyperglycemia), and model log-likelihood

on test data.

Considerations

Further considerations that we have addressed to make the model and fitting

more stable:

1. Personalization. The model is trained simultaneously on the data from all

patients. We learn an embedding of patient-specific demographic information

and add it to the model input.

2. Long-term temporal dependence. To be able to accommodate larger context

window size, i.e., accommodate large t, we use an adaptation of the

Transformer that down-samples the input in-between attention layers [4].

3. Within-batch dependence. During training, samples for each mini-batch of

gradient descent are taken from different patients or different CGM curves for

a patient.

Computational cost of training the model on the data set:

1. GPU: NVIDIA RTX 2080 with 12GB

2. Each epoch of SGD: ≈ 10 minutes

3. Total time for 100 epochs: 16 hours

Future work:

1. Learn latent distribution pz to optimally explore different regimes;

2. Learn number of active mixture components;

3. Incorporate different data sources;

4. Conditional prediction based on future activity.
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