GCT: GATED CONTEXTUAL TRANSFORMER FOR SEQUENTIAL AUDIO TAGGING

1. Introduction

Sequential audio tagging (SAT) means detecting both the class information of audio events, and the order in which they occur within the audio clip. To exploit both forward and backward information of events for SAT tasks, this paper proposes a gated contextual Transformer (GCT) with forward-backward inference.

2. GATED CONTEXTUAL TRANSFORMER (GCT)

2.1. Encoder and Decoder of GCT

Encoder:

There are two ways for the input:

- 1) the entire spectrogram of the audio clip;
- 2) the patch sequence by dividing the spectrogram clip into Patches.

Figure 1: The proposed gated contextual Transformer. In the mask matrices, the red, gray, and white blocks present the positions corresponding to the target to be predicted, the positions of masked data, and the positions of available data.

2.2. Gated contextual multi-layer perceptron (GCMLP)

GCMLP aims to perform the final conditioning of the decoder output based on the gated MLP (gMLP) block and shared weights while considering the contextual information about the target to achieve more accurate predictions.

 $gMLP = Softmax((1 - \lambda) \odot F_2 + \lambda \odot F_1)$

2.3. Forward-backward inference

 $I, I' = \langle S \rangle, \langle S' \rangle$ p = GCMLP(D[:, -1, :])if $p_{et} == \langle E \rangle$: break

Yuanbo Hou¹, Yun Wang², Wenwu Wang³ and Dick Botteldooren¹

¹WAVES, Ghent University, Belgium

²Meta AI, USA

3. Results and analysis

	Pos emb (#2) slightly outperforms _	Table 2: Ablation study of GCT $\{7, 7\}$ component on <i>Noiseme</i> .						
Model structure.	GCMLP (#3). This reveals that when		Pos_emb	GCMLP	AT: Acc (%)	AT: AUC	SAT: BLEU	
Table 1 : AUC of different input modes of GCT with different num-	the input is small patches, the	1	X	X	_	0.600 ± 0.014	-	
▲	position information is valuable for	2	V	<u>^</u>		0.616 ± 0.012		
bers of encoder and decoder blocks on the Noiseme dataset.	the model to effectively capture the	3	×	~	92.55 ± 0.62	0.610 ± 0.009	0.309 ± 0.023	
# NM Patches Clip # NM Patches Clip	local information of events.	4	✓	✓	93.21±0.27	$0.627{\pm}0.019$	0.338±0.012	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		I						
3 4 4 0.600 ± 0.018 0.662\pm0.013 9 9 5 0.609 ± 0.026 0.512 ±0.017	FBI plays a more powerful role when coarse-grained clips are input. The		Table 3 : Ablation study of the inference method on <i>Noiseme</i> .					
$4 5 5 0.599 \pm 0.046 0.660 \pm 0.071 10 9 7 0.604 \pm 0.066 0.511 \pm 0.013$	reason may be that after the							
$5 \mid 6 \mid 6 \mid 0.609 \pm 0.017 \mid 0.596 \pm 0.075 \mid 11 \mid 9 \mid 9 \mid 0.608 \pm 0.027 \mid 0.511 \pm 0.007$	spectrogram is split into patches, the	-		Patches	Clip U	FBIPatches	1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	time interval between forward and) X 93	8.21 ± 0.27	93.49±0.39	× 0.627±0.0	$19\ 0.662 {\pm} 0.013$	
	reverse information is shortened in	-	₹ 🖌 93	8.57 ± 0.46	94.01±0.31	 ✓ 0.635±0.0 	14 0.685±0.022	
Decoder:	each patch, equivalent to reducing th range of context that FBI can capture.							
With the combined effect of forward and backward	Pretrained weight.							

mask matrices, the normal and reverse sequence branches will infer the same target at each time step.

Algorithm 1 PyTorch pseudo code for the proposed FBI

X: input log mel spectrogram; X': X reversed along the time axis E, E' = Encoder(X), Encoder(X')# output of encoder # start token of the normal and reverse sequence for k in range(L - 1): # L: max length of event sequences; B: batch size $D = Decoder_normal_branch(E, I)$ # D: (B, L, number of tokens)# pick the latest target probability vector $D' = \text{Decoder_reverse_branch}(E', I')$

 $p' = \text{GCMLP}(D'[:, -1, :]) \quad \# p' \text{ and } p \text{ are the same target's predictions}$ $p_{ci} = \alpha p + (1 - \alpha) p / \# p_{ci}$: final prediction with contextual informamation; α : importance factor of the forward information, default to 0.5. $p_{et} = \text{torch.max}(p_{ci}, \text{dim}=1).\text{item}() \quad \# p_{et}: \text{ predicted event token}$ $\# \langle E \rangle$: end token of event sequences

 $I = \text{torch.cat}([I, \text{torch.ones}(1, 1).\text{fill}(p_{et})], \text{dim}=1)$ $I' = \text{torch.cat}([I', \text{torch.ones}(1, 1).\text{fill}(p_{et})], \text{dim}=1)$

The inferred sequences match the corresponding labels consistently, which means that GCT is good at exploiting event context to identify event sequences.

Figure 2: Attention in GCT. In subgraph (c), the x-axis is each event predicted in an autoregressive way, the y-axis is the reference event.

³CVSSP, University of Surrey, UK

Ablation study.

#5 outperforms #4, indicating that the encoder with the ability in acoustic feature extraction is more

important than Pos_emb in providing

the position information of patches.

Table 4 : Effect of transfer learning on GCT on DCASE.									
#	Pos_emb	Encoder	AT: Acc (%)	SAT: BLEU					
1	No Transfer		89.13 ± 0.58	0.435 ± 0.037					
2	Fixed	Fixed	97.68±0.18	$0.677 {\pm} 0.014$					
3	Fine-tuned	Fine-tuned	96.27 ± 0.36	$0.645 {\pm} 0.019$					
4	Fixed	Fine-tuned	$93.84{\pm}0.85$	$0.639 {\pm} 0.016$					
5	Fine-tuned	Fixed	96.45 ± 0.47	$0.662 {\pm} 0.015$					

The fixed mode (#2) is better than fine-tuning the transferred parameters (#3). The reason may be that the part (Pos emb and encoder) containing pretrained weights and the remaining randomly initialized part (decoder and GCMLP) differ greatly in the latent space, finetuning these two disparate parts using the same learning rate will inevitably affect the performance of (Pos emb and encoder) with audio events expertise.

Case study.

4. Conclusion

To improve cTransformer in structure and inference, we propose a gated contextual Transformer (GCT) with GCMLP and FBI for SAT.

Table 2: Ablation study of GCT {7, 7} component on *Noiseme*.