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Table 2: Ablation study of GCT {7, 7} component on Noiseme.
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tasks, this paper proposes a gated contextual I[{1 2{0.5754+0.010 0.6474+0.012|7]8 6[0.534£0.033 0.557+0.058
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2. GATED CONTEXTUAL TRANSFORMER (GCT) 5|6 6{0.609+0.017 0.59640.075(11]9 9 [0.60840.027 0.51140.007 rea>on may be that areet the STEBI| Paiches Clip FBI| Paiches Clip
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2.1. EnCOder and DeCOder Of GCT each patch, equivalent to reducing the
E d D d range of context that FBI can capture.
ncoder: ecodader.

With the combined effect of forward and backward
mask matrices, the normal and reverse sequence

There are two ways for the input:
1) the entire spectrogram of the audio clip;

Pretrained weight.
Table 4: Effect of transfer learning on GCT on DCASE.

2) the patch sequence by dividing the spectrogram clip into Patches. branches will infer the same target at each time step. #5 outperforms #4, indicating that # | Posemb  Encoder | ATAcc(%) SAIL: BLEU
- S 1 No Transfer 89.131+0.58 0.435+0.037
the encoder with the ability in > Fixed Fixed 97.684+0.18  0.67740.014
Feed Forward layer Add & Norm layer GCMLP | acoustic feature extraction is more 3 Fine-tuned  Fine-tuned 96274036 0.645+0.019
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The inferred sequences
match the corresponding
labels consistently, which
means that GCT is good at
exploiting event context to
identify event sequences.

Figure 1: The proposed gated contextual Transformer. In the mask matrices, the red, gray, and white
blocks present the positions corresponding to the target to be predicted, the positions of masked
data, and the positions of available data.

2.2. Gated contextual multi-layer 2.3. Forward-backward inference

perceptron (GCMLP)
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(c) Masked attention
score from the
normal branch (left)
and the reverse
branch (right) in the
decoder.

Algorithm 1 PyTorch pseudo code for the proposed FBI

# X: input log mel spectrogram; X’: X reversed along the time axis

E. E’ =Encoder(X), Encoder(X") # output of encoder

I.I"=<S>. <S5 > # start token of the normal and reverse sequence

for kK inrange(L — 1): # L: max length of event sequences; B: batch size
D = Decoder_normal_branch(FE, I) # D: (B. L. number of tokens)
p=GCMLP(D]I:, -1, :]) # pick the latest target probability vector

D’ = Decoder_reverse_branch(E’, I')
p’ = GCMLP(D’[:, -1,:]) # p/ and p are the same target’s predictions

Pei = ap + (1 — a)pr # p.;: final prediction with contextual informa-
mation; «: importance factor of the forward information, default to 0.5.

_, Pet = torch.max(p.;. dim=1).1tem() # pet: predicted event token
If pet == <E>: break # < E>: end token of event sequences

0.6 04

0.66 0.34

Sp

GCMLP aims to perform the final
conditioning of the decoder output
based on the gated MLP (gMLP) block
and shared weights while considering
the contextual information about the
target to achieve more accurate
predictions.

Figure 2: Attention in GCT.

In subgraph (c), the x-axis is each
event predicted in an autoregressive
way, the y-axis is the reference event.
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4. Conclusion

To improve cTransformer in structure and inference, we propose a gated
contextual Transformer (GCT) with GCMLP and FBI for SAT.

I = torch.cat([ 1, torch.ones(1, 1).filll_.(pet)]. dim=1)

QMLP — Softma’m((l - )\) OF; + A0 Fl) I’ =torch.cat([I’, torch.ones(1, 1).fill (pet)], dim=1)
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