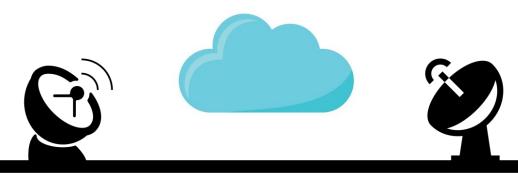
EMC²-Net: Joint Equalization and Modulation Classification based on Constellation Network

Introduction

- Modulation Classification (MC) is the first step performed at the receiver side unless the transmitter explicitly indicates the modulation type. Machine learning techniques have been widely used for MC recently, but do not exploit any domain knowledge, and some works take constellation as an image.
- We propose *EMC²-Net*, a new algorithm for MC, which understands constellation as a set of 2D points (in I/Q coordinates), incurring no information loss.
- We propose a *Three-phase training strategy* to separate the roles of the equalizer and classifier, which are trained jointly under the supervision of modulation type label.
- *EMC²-Net* shows SOTA performance on classifying linear modulations with much less complexity compared to baseline methods.



Experiments

Synthetic Datasets

- 8 target linear modulations: BPSK, QPSK, 8PSK, 16QAM, 32QAM, 64QAM, 128QAM, and 256QAM
- Up-sampling factor is 8; The pulse shaping filter is an RRC filter w/ a roll-off factor of 0.35, which spans 4 symbols; The transmitter output length is 16,384
- Channel specifications are sampling rate 200 kHz; path delays [0, 9, 17] μs ; average path gains [0, -2, -10] dB; maximum Doppler shift 4 Hz; K-factor 4 for Rician, 0 for Rayleigh fading. Each path consists of 18 taps with the same specifications. SNR is kept at 30 dB.
- Trimmed signal length is 8,192; Each frame contains 1,024 symbols. The total # of frames is 16K, i.e., 8 modulations with 2K frames each.
- For the AWGN+PO dataset, a random phase offset is introduced on each frame instead of fading, and SNR varies from 10 to 28 dB.

Training Details

- Adam optimizer w/ the learning rate of 10^{-3} , except that the learning rate of the classifier at Phase 3 is 2.5×10^{-4} .
- The batch size is 64 and the network is trained by 500 epochs.

Hyun Ryu and Junil Choi School of Electrical Engineering, KAIST

Methods

System Model

- Tx: <u>Random bits</u> \rightarrow Mod. \rightarrow Norm. \rightarrow Up-sampling \rightarrow Pulse-shaping
- Channel: Rician/Rayleigh fading \rightarrow AWGN
- Rx: Transients removal \rightarrow Trimming \rightarrow Norm. \rightarrow Sequential data

Architecture

<u>Equalizer</u> Two 1D residual blocks (RBs)

Zero-mean to eliminate DC offset Matched filter (MF), Decimate Normalize to unit power

Classifier

Training

- *Three-phase training strategy*: Classifier pretraining \rightarrow Equalizer training \rightarrow Equalizer-Classifier fine-tuning
- Loss functions: Phases 1 and 3 are guided by cross-entropy loss. In Phase 2, CMA loss is additionally included to enforce the Gaussianity of the equalized constellation.

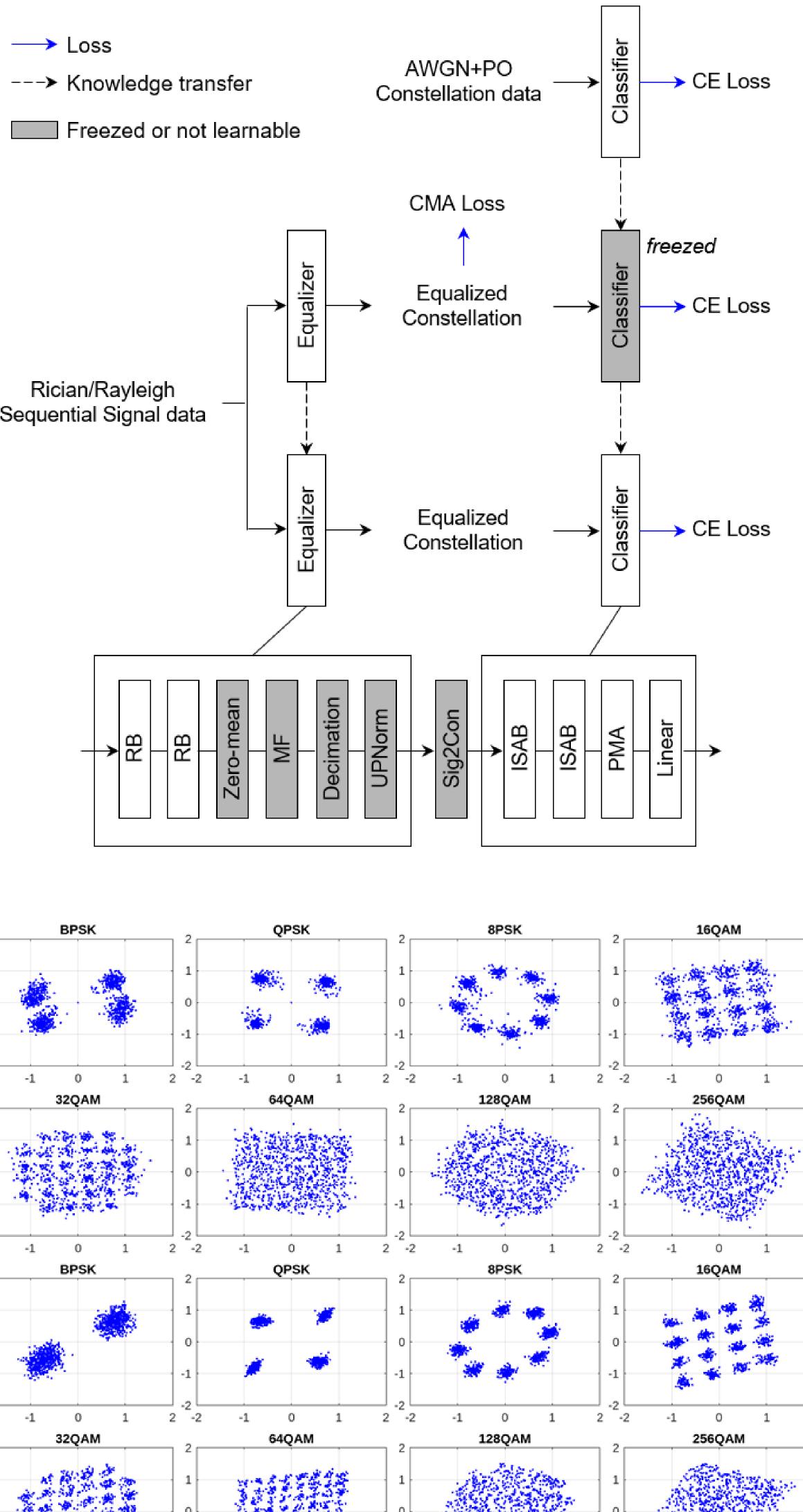
Results

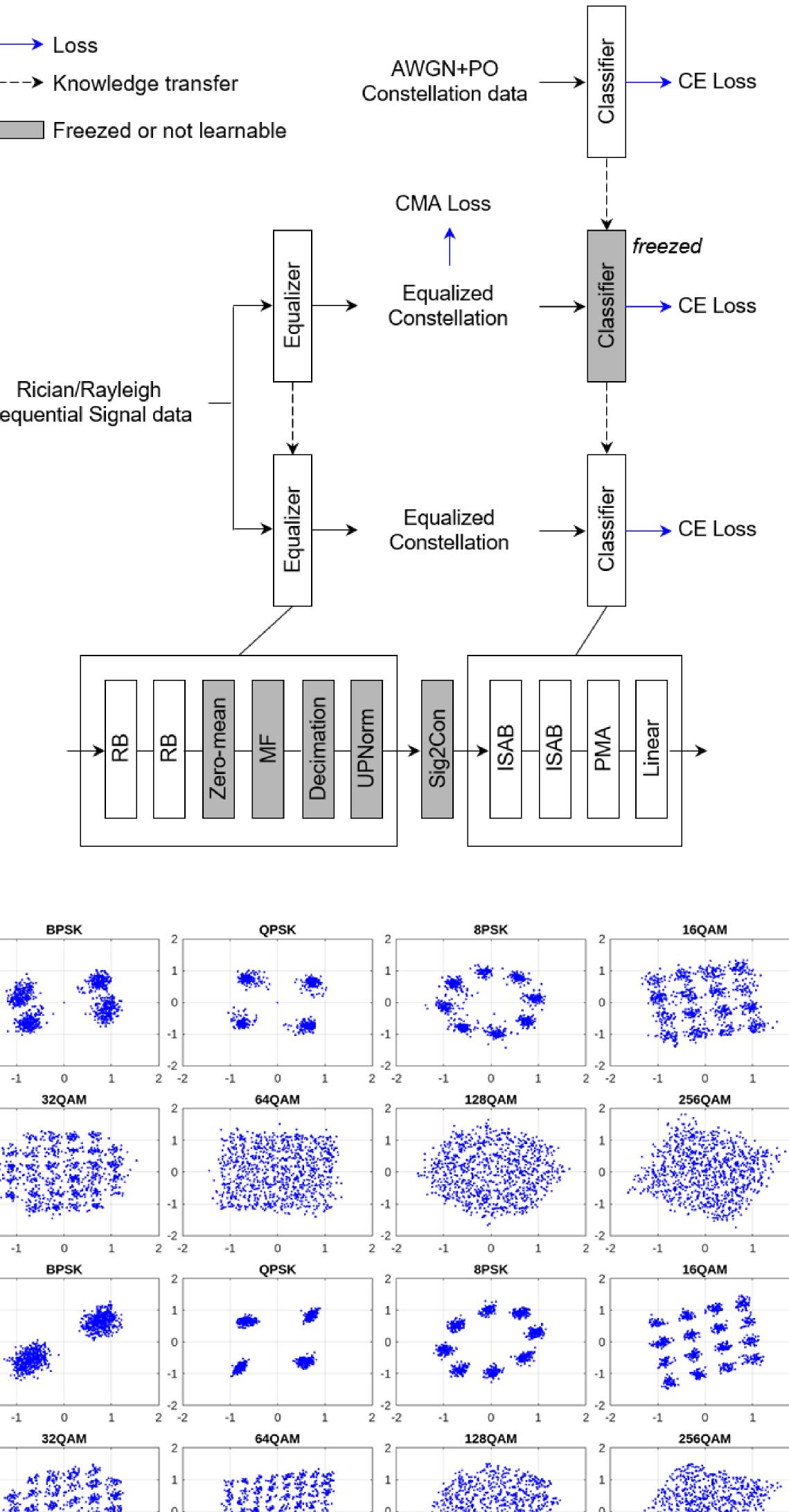
Method	Params	Runtime	Rician	Rayleigh	AWGN
	(K)	(ms)	(%)	(%)	+PO(%)
ML* [5]	N/A	N/A	68.59	62.78	96.32
HOC-MLP [6]	20	N/A	65.44	63.59	78.04
CNN1D [7]	167,898	0.030	53.09	49.97	60.26
ResNet1D [8]	1,175	0.209	83.72	82.91	92.17
MCNet [9]	207	0.317	88.50	86.44	92.38
ChainNet [10]	331	0.176	82.84	84.09	84.86
SCGNet [11]	441	1.704	83.00	81.34	91.42
CNN-LSTM [12]	1,150	0.310	84.62	81.22	89.86
HybridNet [13]	983	0.396	85.31	83.94	94.22
CNN2D* [14]	8,044	0.042	68.97	69.12	92.31
ResNet2D* [20]	602	0.252	66.78	67.09	92.74
EMC ² -Net	300	0.120	89.16	86.53	93.35
EMC ² -Net w/o P1	300	0.120	85.75	83.19	N/A
EMC ² -Net w/o P2	300	0.120	87.66	86.28	N/A
EMC ² -Net w/o P3	300	0.120	80.81	72.38	N/A
EMC ² -Net w/ CMA	299	N/A	86.53	81.53	N/A

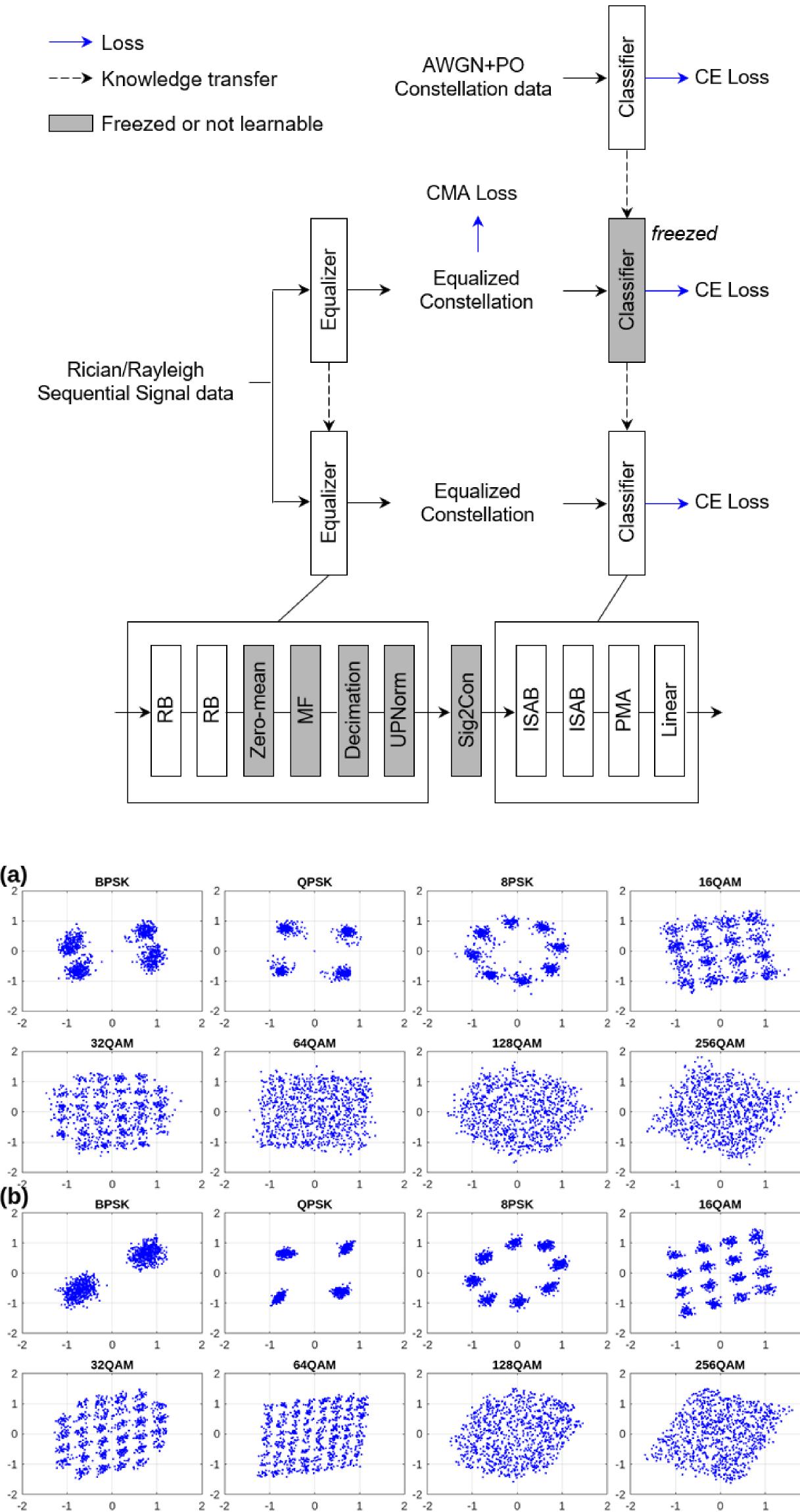
EMC²-Net outperforms SOTA baselines on the fading datasets and gives notable result on the AWGN+PO dataset.

EMC²-Net reduces the # of parameters and runtime significantly compared with baselines, even with memory-efficient CNNs.

- Induced self-attention blocks (ISABs) extract features of a set of 2D points
- Pooling by multi-head attention (PMA) aggregates features into lower dim.
- The last linear layer gives the prob.







signals for each target linear modulation.

The equalizer output of (a) CMA and (b) EMC²-Net of corresponding