

TG-Critic: A Timbre-Guided Model for Reference-Independent Singing Evaluation

1. Introduction

What is Automatic Singing Evaluation?

Automatic singing evaluation aims to assess the quality of singing performances without the participation of music experts, thus reducing manpower costs. Depending on whether a reference melody is required, the existing automatic singing evaluation systems can be roughly divided into two types:

- Reference-dependent approaches
- Reference-independent approaches

Challenges in Automatic Singing Evaluation?

Automatic singing evaluation independent of reference melody is a challenging task as the criteria are subjective and multi-dimensional. As an essential attribute of singing voices, vocal timbre has a non-negligible effect and influence on human perception of singing quality. But so far, no research has been done to include timbre information explicitly in singing evaluation models.

▲ The overall architecture of the proposed TG-Critic.

2. Approach

In this paper, we explore adding timbre embeddings as the model inputs and propose a **timbre-guided** singing evaluation model named TG-Critic:

- In addition to CQT, timbre embeddings are introduced as one of the model inputs.
- The trunk structure of TG-Critic is designed as a multi-scale CNN-based network.
- An automatic annotation method is designed to construct a large three-class singing evaluation dataset with low manual cost.

Xiaoheng Sun, Yuejie Gao, Hanyao Lin and Huaping Liu **NetEase Cloud Music** | Fudan University

2.1. Timbre Branch

A metric learning based embedding model designed for singer-relevant tasks (e.g., singer identification) is adopted to produce timbre embeddings. These embeddings are then further processed into 64 dimensions vectors by TG-Critic's Timbre Branch.

Really helpful?

- T-SNE shows that vectors of the same quality level are closer to each other than those of different levels.
- Even if only timbre embeddings are used as model inputs, an accuracy of 62% can still be achieved.

▲ The t-SNE visualization of timbre vectors derived from samples with different singing qualities.

3. Evaluation

Model	Precision (%)			Recall (%)			Acc.
	A	Μ	Ι	A	Μ	Ι	(%)
TG-Critic-1S	83.5	71.6	84.0	90.5	69.2	79.7	79.8
TG-Critic-2S	87.2	73.6	86.7	89.9	75.5	81.8	82.3
CQT-Only	84.3	69.8	79.5	88.9	63.6	82.4	78.2
TG-Simple	82.1	68.4	88.7	92.9	72.5	71.6	79.0

Comparison with Previous Works

- To compare with previous works, we reproduce three baseline models. All three models are referenceindependent singing evaluation models.
- In addition to YJ-900 (894 samples), we use two public datasets PESnQ-DS (20 samples) and NUS48E (48 samples) for tests.
- To make a comprehensive comparison, we obtain a weighted score for each prediction using the output probability distribution.

2.2. High-Resolution Branch

We use CQT as the input mid-level feature. To better detect local patterns, a CNN- based structure is designed as the backbone of High- Resolution Branch. We also introduce a multi-scale structure to summarize the contextual information from features in a high-resolution way:

- Downsampling to expand the context range
- Retain high-resolution features to ensure detail patterns
- Rescaling & Merging to exchange information from different scales

The multi-scale structure of YG-Critc's High-Resolution Branch

And finally ...

- Concatenate output vectors from two branches
- Produce classification results for singing quality:
- Awesome (A) Mediocre(M) Inferior(I)

Ablation Study

- For the proposed TG-Critic, two models are trained by different training strategies:
- **TG-Critic-1S**: The High-Resolution Branch and the Timbre-Branch are trained together in one step;
- **TG-Critic-2S**: The High-Resolution Branch is first trained & frozen, and then the Timbre Branch is trained. • **CQT-Only**: Remove the Timbre Branch.
- **TG-Simple**: Replace the High-Resolution Branch with a simple CNN structure

Model	Param.	YJ-900	PESnQ-DS		NUS48E	
		Acc.	Acc.	Corr.	Acc.	Corr.
Kuaishou [15]	1.97M	68.3	85.0	0.858	68.8	0.497
NUS20 [17]	0.72M	76.3	85.0	0.930	68.8	0.552
NUS21 [18]	1.45M	78.4	85.0	0.925	72.9	0.548
TG-Critic-1S	0.85M	79.8	80.0	0.927	72.9	0.671
TG-Critic-2S	0.0211	82.3	95.0	0.933	77.1	0.631

4.Conclusion

In this paper, we have proposed TG-Critic, a timbre-guided singing evaluation model independent of the reference melody. The proposed model includes timbre information explicitly by using timbre embedding as one of the model inputs. A multi-scale structure is introduced to process the CQT features in a high-resolution way. We also construct a large singing dataset YJ-16K with annotations labeled by an iterative automatic annotation method. Experimental results show the proposed model outperforms the existing state-of-the-art models in most cases.

Our team ▼

2.3. Automatic Annotation

Dataset YJ-16K

- Totally 32,623 unaccompanied singing pieces.
- YJ-900: 894 manually annotated samples.
- YJ-AN: 31729 automatically annotated samples.

Iterative Automatic Annotation

To alleviate the problem of insufficient data, we propose an iterative automatic annotation method using metadata and predicted results from last iteration. ▼

For further results ▼

