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1. Introduction

What is Automatic Singing Evaluation?

Automatic singing evaluation aims to assess the quality of singing performances
without the participation of music experts, thus reducing manpower costs. Depending on
whether a reference melody is required, the existing automatic singing evaluation systems
can be roughly divided into two types:

e Reference-dependent approaches

e Reference-independent approaches

Challenges in Automatic Singing Evaluation?

Automatic singing evaluation independent of reference melody is a challenging task as
the criteria are subjective and multi-dimensional. As an essential attribute of singing voices,
vocal timbre has a non-negligible effect and influence on human perception of singing
quality. But so far, no research has been done to include timbre information explicitly in

singing evaluation models.
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A The overall architecture of the proposed TG-Critic.

2. Approach

In this paper, we explore adding timbre embeddings as the model inputs and propose a
timbre-guided singing evaluation model named TG-Critic:

e |n addition to CQT, timbre embeddings are introduced as one of the model inputs.

e The trunk structure of TG-Critic is designed as a multi-scale CNN-based network.

e An automatic annotation method is designed to construct a large three-class singing

evaluation dataset with low manual cost.

2.1. Timbre Branch

A metric learning based embedding model designed for

singer-relevant tasks (e.g., singer identification) is adopted

to produce timbre embeddings. These embeddings are

then further processed into 64 dimensions vectors by

TG-Critic’s Timbre Branch.

Really helpful?

e T[-SNE shows that vectors of the same quality level are

closer to each other than those of different levels.

e Even if only timbre embeddings are used as model

iInputs, an accuracy of 62% can still be achieved.

2.2. High-Resolution Branch

We use CQT as the input mid-level feature. To better
detect local patterns, a CNN- based structure is designed as
the backbone of High- Resolution Branch. We also introduce
a multi-scale structure to summarize the contextual
iInformation from features in a high-resolution way:

e Downsampling to expand the context range
e Retain high-resolution features to ensure detail patterns
e Rescaling & Merging to exchange information from

different scales

< The multi-scale structure
of YG-Critc’s

High-Resolution Branch

And finally ...
e Concatenate output vectors from two branches
e Produce classification results for singing quality:
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TG-Critic-1S | 83.5 716 840 | 905 69.2 79.77 | 79.8
TG-Critic-2S | 87.2 73.6 86.7 | 89.9 755 81.8 | 82.3
CQT-Only 84.3 69.8 795 | 889 63.6 824 | 78.2
TG-Simple 82.1 684 88.7 (929 725 71.6 | 79.0 °

Comparison with Previous Works »

For the proposed TG-Critic, two models are trained by

different training strategies:

o TG-Critic-1S: The High-Resolution Branch and the
Timbre-Branch are trained together in one step;

o TG-Critic-2S: The High-Resolution Branch is first
trained & frozen, and then the Timbre Branch is trained.

CQT-Only: Remove the Timbre Branch.

TG-Simple: Replace the High-Resolution Branch with a

simple CNN structure
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2.3. Automatic Annotation
Dataset YJ-16K

e Totally 32,623 unaccompanied singing pieces.
e YJ-900: 894 manually annotated samples.

e YJ-AN: 31729 automatically annotated samples.

Iterative Automatic Annotation

To alleviate the problem of insufficient data, we
propose an iterative automatic annotation method using

metadata and predicted results from last iteration. ¥
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4.Conclusion

In this paper, we have proposed TG-Critic, a timbre-guided
singing evaluation model independent of the reference melody. The
proposed model includes timbre information explicitly by using timbre
embedding as one of the model inputs. A multi-scale structure is
introduced to process the CQT features in a high-resolution way. We
also construct a large singing dataset YJ-16K with annotations
labeled by an iterative automatic annotation method. Experimental
results show the proposed model outperforms the existing

state-of-the-art models in most cases.
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e TJo compare with previous works, we reproduce three YJ-900 PESnQ-DS NUS48E
baseline models. All three models are reference- Model Param. Acc. Acc. Corr. | Acc. Corr.
independent singing evaluation models. .

e In addition to YJ-900 (894 samples), we use two public Kuaishou [15] | ' 1.97TM 63.3 850 0.858 | 68.8 0.497
datasets PESnQ-DS (20 samples) and NUSA48E (48 NUS20 [17] 0.72M 76.3 85.0 0.930 | 68.8 0.552
samples) for tests. NUS21 18] 1.45M 78.4 85.0 0.925 | 729 0.548

e To make a comprehensive comparison, we obtain a TG-Critic-18 0.82M 79.8 80.0 0.927 | 729 0.671
weighted score for each prediction using the output TG-Critic-2S ' 82.3 95.0 0933 | 77.1 0.631

probability distribution.




