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Background

B Online Learning

— Online learning is a powerful tool to process streaming data.
— In response to an environment that provides (adversarial) losses sequen-
tially, an online learning algorithm makes one-step-ahead decisions.
B Distributed Online Learning

— Multiple participants separately collect streaming data, make local decisions.
— Server aggregates all local decisions to a global one.
— Applications: online web ranking and advertisement recommendation.

B Performance of an online learning algorithm is characterized by (adversarial)
regret, and a sublinear (adversarial) regret is perferred.

Adversarial participants

B But adversarial (Byzantine) participants may exist, which can collude and ar-
bitrarily modify the messages sent to server (called the Byzantine Attacks).

W Is it possible to develop a Byzantine-robust distributed online learning algo-
rithm with provable sublinear adversarial regret, in an adversarial environ-
ment and in the presence of adversarial participants ?

B Answer is Negative

x Distributed online gradient descent with mean: infinite adversarial regret.
X Even with robust aggregation rules: linear adversarial regret.

Problem Formulation: Adversarial Regret

m Consider n participants in A/, h honest in H, b Byzantinein B, n = h + b.
B Suppose the ratio of Byzantine participants is less than half: o := % < %

B Goal: minimize adversarial regret over T steps

T T
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and ftf iIs the loss revealed to j € H at the end of step t.
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Fig. 1. Performance of Byzantine-robust distributed online gradient descent.

Byzantine-robust Distributed Online Gradient Descent

Adversarial Regret & Algorithm

Each honest participant j makes its local decision by online gradient descent:
W{H = Wy — ntVftj(Wt), step size n; > 0. (2)

B Baseline: distributed online gradient descent (2) with mean aggregation

Server aggregates messages z{ (W{ from honest and arbitrary from Byzantine)

1 —
WtH:;Zz{H. (3)
j=1

B Ours: Byzantine-robust distributed online gradient descent (2) with AGG

2

Wit+1 = AGG(Z£L+1' Ztp1r " 'Zt?#—l)' (4)

AGG is Robust Bounded Aggregation, if
1 .
Iwe = zl* =|AGG (2, 22, 20) ~2|* < C2C zi= 7 > 7. (5)
. jeEH
where ||z; — ZI||* < ¢, C, is a constant depending on « and aggregation rules.

Assumptions
Define V1 (w:) := + =y V! (w:) and w* := argmin,, e 2;1 fe(w). For any
honest participant’s loss f/ where j € H and any x, y € R, we assume
1 L-smoothness. ||V (x) — VFf (y)|| < L||x — y||.
2 p-strong convexity. (VF(x), x —y) > ff(x) = f(y) + §lx — y|I*.
3 Bounded deviation. ||V (w;) — Vi (w:)||? < o2.

4 Bounded gradient at the overall best solution. [+ >4, Vi (w*)|]? < &2

Convergence

Theorem 1: Under Assumptions 1, 2, 3 and 4, if n = O(%), Byzantine-robust
distributed online gradient descent has a linear adversarial regret bound

Rr = O((C20? + )V T) + O(C25°T). (6)
We construct a counter-example to demonstrate O(c2 T) is tight.

How to derive sublinear regret under Byzantine Attacks?
— Not fully adversarial environment.
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Fig. 2. Performance of Byzantine-robust distributed online momentum.
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Byzantine-Robust Distributed Online Momentum

Stochastic Regret & Algorithm

m Not fully adversarial environment: losses are independent and identically dis-
tributed (i.i.d.), meaning f{ ~ D forall j € H and all t.

m Define the expected loss F(w) := Epf!(w) forall j € H and all t.

B New Goal: minimize stochastic regret over [ steps

-
Sr=EY F(w)—T- min F(w). (7)

d
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B Each honest participant j maintains a momentum vector to reduce variance
m} = vV (we) + (1 v)m)_,, 8)
where 0 < vy < 1 is momentum parameter. Then, it makes a local decision

wliy = we —nem,. (9)
B Ours: Byzantine-Robust distributed online momentum (9) with AGG.

Assumptions

For expected loss F(w) and any x, y € R9, we assume

5 L-smoothness. ||VF(x) — VF(y)|| < L||x —y||.
6 p-strong convexity. (VF(x),x —y) > F(x) — F(y) + &|lx — y||*.
7 Bounded variance. Ep ||V (w,) — VF(wy)||? < 02,

Convergence

Theorem 2: Supposed losses are i.i.d., under Assumptions 5, 6 and 7, if n = O(%)

and v = (’)(%), Byzantine-robust distributed online momentum has a sublinear
stochastic regret bound

2 4

ST:O((1—|—U—(1—|—(h—|—1)C2>L—4)ﬁ>. (10)
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Numerical Experiments

Setting

B Softmax regression on the i.i.d. MNIST dataset.

B Measurement: adversarial regret and accuracy.

Observations from Experiments

m Fig. 1: Byzantine-robust distributed online gradient descent shows robustness.

B Fig. 2: Byzantine-robust distributed online momentum shows improvement.

More experimental results on non-i.i.d. data are shown in the paper.

More results and codes are available at https://github.com/wanger521/0GD.



