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Background
� Online Learning

– Online learning is a powerful tool to process streaming data.

– In response to an environment that provides (adversarial) losses sequen-

tially, an online learning algorithm makes one-step-ahead decisions.

� Distributed Online Learning

– Multiple participants separately collect streaming data, make local decisions.

– Server aggregates all local decisions to a global one.

– Applications: online web ranking and advertisement recommendation.

� Performance of an online learning algorithm is characterized by (adversarial)

regret, and a sublinear (adversarial) regret is perferred.

Adversarial participants
� But adversarial (Byzantine) participants may exist, which can collude and ar-

bitrarily modify the messages sent to server (called the Byzantine Attacks).

� Is it possible to develop a Byzantine-robust distributed online learning algo-

rithm with provable sublinear adversarial regret, in an adversarial environ-

ment and in the presence of adversarial participants ?

� Answer is Negative

× Distributed online gradient descent with mean: infinite adversarial regret.

× Even with robust aggregation rules: linear adversarial regret.

Problem Formulation: Adversarial Regret
� Consider n participants inN , h honest inH, b Byzantine in B, n = h + b.
� Suppose the ratio of Byzantine participants is less than half: α := b

n < 1
2 .

� Goal: minimize adversarial regret over T steps

RT :=
1

h

T∑
t=1

∑
j∈H

f j
t (wt)− min

w∈Rd

1

h

T∑
t=1

∑
j∈H

f j
t (w), (1)

and f j
t is the loss revealed to j ∈ H at the end of step t .

Fig. 1. Performance of Byzantine-robust distributed online gradient descent.

Byzantine-robust Distributed Online Gradient Descent
Adversarial Regret & Algorithm

Each honest participant j makes its local decision by online gradient descent:

w j
t+1 = wt − ηt∇f j

t (wt), step size ηt > 0. (2)

� Baseline: distributed online gradient descent (2) with mean aggregation

Server aggregates messages z j
t (w j

t from honest and arbitrary from Byzantine)

wt+1 =
1

n

n∑
j=1

z j
t+1. (3)

� Ours: Byzantine-robust distributed online gradient descent (2) with AGG

wt+1 = AGG(z1
t+1, z2

t+1, · · · , zn
t+1). (4)

AGG is Robust Bounded Aggregation, if

‖wt − z̄t‖2 =‖AGG(z1
t , z2

t , · · · , zn
t )− z̄t‖2 ≤ C2

αζ
2, z̄t :=

1

h
∑
j∈H

z j
t , (5)

where ‖z̄t − z j
t‖2 ≤ ζ2, Cα is a constant depending on α and aggregation rules.

Assumptions

Define∇f̄t(wt) :=
1
h
∑

j∈H ∇f j
t (wt) and w∗ := argminw∈Rd

∑T
t=1 ft(w). For any

honest participant’s loss f j
t where j ∈ H and any x , y ∈ Rd , we assume

1 L-smoothness. ||∇f j
t (x)−∇f j

t (y)|| ≤ L||x − y ||.
2 µ-strong convexity. 〈∇f j

t (x), x − y〉 ≥ f j
t (x)− f j

t (y) + µ
2 ‖x − y‖2.

3 Bounded deviation. ||∇f j
t (wt)−∇f̄t(wt)||2 ≤ σ2.

4 Bounded gradient at the overall best solution. ‖ 1
h
∑

j∈H ∇f j
t (w∗)‖2 ≤ ξ2.

Convergence

Theorem 1: Under Assumptions 1, 2, 3 and 4, if η = O( 1√
T ), Byzantine-robust

distributed online gradient descent has a linear adversarial regret bound

RT = O((C2
ασ

2 + ξ2)
√

T ) +O(C2
ασ

2T ). (6)

We construct a counter-example to demonstrateO(σ2T ) is tight.

How to derive sublinear regret under Byzantine Attacks?

→ Not fully adversarial environment.

Fig. 2. Performance of Byzantine-robust distributed online momentum.

Byzantine-Robust Distributed Online Momentum
Stochastic Regret & Algorithm

� Not fully adversarial environment: losses are independent and identically dis-

tributed (i.i.d.), meaning f j
t ∼ D for all j ∈ H and all t .

� Define the expected loss F (w) := EDf j
t (w) for all j ∈ H and all t .

� New Goal: minimize stochastic regret over T steps

ST := E
T∑

t=1

F (wt)− T · min
w∈Rd

F (w). (7)

� Each honest participant j maintains a momentum vector to reduce variance

mj
t = νt∇f j

t (wt) + (1− νt)mj
t−1, (8)

where 0 < νt < 1 is momentum parameter. Then, it makes a local decision

w j
t+1 = wt − ηtmj

t . (9)

� Ours: Byzantine-Robust distributed online momentum (9) with AGG.

Assumptions

For expected loss F (w) and any x , y ∈ Rd , we assume

5 L-smoothness. ||∇F (x)−∇F (y)|| ≤ L||x − y ||.
6 µ-strong convexity. 〈∇F (x), x − y〉 ≥ F (x)− F (y) + µ

2 ‖x − y‖2.

7 Bounded variance. ED||∇f j
t (wt)−∇F (wt)||2 ≤ σ2.

Convergence

Theorem 2: Supposed losses are i.i.d., under Assumptions 5, 6 and 7, if η = O( 1√
T )

and ν = O( 1√
T ), Byzantine-robust distributed online momentum has a sublinear

stochastic regret bound

ST = O
((

1 +
σ2

h

(
1 + (h + 1)C2

α

)L4

µ4

)√
T
)

. (10)

Numerical Experiments
Setting

� Softmax regression on the i.i.d. MNIST dataset.

� Measurement: adversarial regret and accuracy.

Observations from Experiments

� Fig. 1: Byzantine-robust distributed online gradient descent shows robustness.

� Fig. 2: Byzantine-robust distributed online momentum shows improvement.

More experimental results on non-i.i.d. data are shown in the paper.

More results and codes are available at https://github.com/wanger521/OGD.


