Distributed Online Learning with Adversarial Paticipants in An Adversarial Environment

Xingrong Dong¹ Zhaoxian Wu¹ Qing Ling¹ Zhi Tian²

¹Sun Yat-Sen University

²George Mason University

2023 IEEE International Conference on Acoustics, Speech and Signal Processing (IEEE ICASSP 2023)

Online Learning

- Online learning is a powerful tool to process streaming data.
- In response to an environment that provides (adversarial) losses sequentially, an online learning algorithm makes one-step-ahead decisions.

Distributed Online Learning

- Multiple participants separately collect streaming data, make local decisions.
- Server aggregates all local decisions to a global one.
- Applications: online web ranking and online advertisement recommendation.

Performance of an online learning algorithm is characterized by (adversarial) regret, and a sublinear (adversarial) regret is perferred.

But not all participants are honest.

Byzantine Attack

Adversarial participants (called Byzantine participants) can collude and arbitrarily modify the messages sent to the server.

Is it possible to develop a Byzantine-robust distributed online learning algorithm with provable sublinear adversarial regret, in an adversarial environment and in the presence of adversarial participants ?

Answer Is Negative

X Distributed online gradient descent with mean: infinite adversarial regret.

X Even with robust aggregation rules: linear adversarial regret.

Problem Statement: Adversarial Regret

- Consider *n* participants in \mathcal{N} , *h* honest in \mathcal{H} , *b* Byzantine in \mathcal{B} , n = h + b.
- Suppose the ratio of Byzantine participants is less than half: $\alpha := \frac{b}{n} < \frac{1}{2}$.
- Goal: minimize adversarial regret over T steps

$$R_{T} := \sum_{t=1}^{T} f_t(w_t) - \min_{w \in \mathbb{R}^d} \sum_{t=1}^{T} f_t(w),$$
(1)

where

$$f_t(w) := \frac{1}{h} \sum_{j \in \mathcal{H}} f_t^j(w), \tag{2}$$

and f_t^j is the loss revealed to $j \in \mathcal{H}$ at the end of step *t*.

Byzantine-robust Distributed Online Gradient Descent

Each honest participant *j* makes its local decision by **online gradient descent**:

$$w_{t+1}^j = w_t - \eta_t
abla f_t^j(w_t), \quad ext{step size } \eta_t > 0.$$
 (3)

 Baseline: distributed online gradient descent (3) with mean aggregation Server aggregates messages z^j_{t+1} (w^j_{t+1} from honest and arbitrary from Byzantine)

$$w_{t+1} = \frac{1}{n} \sum_{j=1}^{n} z_{t+1}^{j}.$$
 (4)

• Ours: Byzantine-robust distributed online gradient descent (3) with AGG

$$w_{t+1} = AGG(z_{t+1}^1, z_{t+1}^2, \cdots, z_{t+1}^n).$$
(5)

AGG is Robust Bounded Aggregation, if

$$\|w_{t+1} - \bar{z}_{t+1}\|^2 = \|AGG(z_{t+1}^1, z_{t+1}^2, \cdots, z_t^n) - \bar{z}_{t+1}\|^2 \le C_{\alpha}^2 \zeta^2, \ \bar{z}_{t+1} := \frac{1}{h} \sum_{j \in \mathcal{H}} z_{t+1}^j,$$

where $\|\bar{z}_{t+1} - z_{t+1}^j\|^2 \leq \zeta^2$, C_{α} is a constant dependent on α and aggregation.

Assumptions & Theorem 1

Define $\nabla \overline{f}_t(w_t) := \frac{1}{h} \sum_{j \in \mathcal{H}} \nabla f_t^j(w_t)$ and $w^* := \arg \min_{w \in \mathbb{R}^d} \sum_{t=1}^T f_t(w)$. For any honest participant's loss f_t^j where $j \in \mathcal{H}$ and any $x, y \in \mathbb{R}^d$ we assume Assumption 1 *L*-smoothness. $||\nabla f_t^j(x) - \nabla f_t^j(y)|| \le L||x - y||$. Assumption 2 μ -strong convexity. $\langle \nabla f_t^j(x), x - y \rangle \ge f_t^j(x) - f_t^j(y) + \frac{\mu}{2} ||x - y||^2$. Assumption 3 Bounded deviation. $||\nabla f_t^j(w_t) - \nabla \overline{f}_t(w_t)||^2 \le \sigma^2$. Assumption 4 Bounded gradient at the overall best solution. $||\frac{1}{h} \sum_{j \in \mathcal{H}} \nabla f_t^j(w^*)||^2 \le \xi^2$.

Theorem 1

Under Assumptions 1, 2, 3 and 4, if $\eta = O(\frac{1}{\sqrt{T}})$, Byzantine-robust distributed online gradient descent has a linear adversarial regret bound

$$R_{T} = \mathcal{O}((C_{\alpha}^{2}\sigma^{2} + \xi^{2})\sqrt{T}) + \mathcal{O}(C_{\alpha}^{2}\sigma^{2}T).$$
(6)

We construct a counter-example to demonstrate $\mathcal{O}(\sigma^2 T)$ is tight.

How to derive sublinear regret under Byzantine Attacks? \rightarrow Not fully adversarial environment.

Xingrong Dong, Zhaoxian Wu, Qing Ling, Zhi Tian

ICASSP2023

Byzantine-Robust Distributed Online Momentum

- Not fully adversarial environment: losses are independent and identically distributed (i.i.d.), meaning f^j_t ~ D for all j ∈ H and all t.
- Define the expected loss $F(w) := \mathbb{E}_{\mathcal{D}} f_t^j(w)$ for all $j \in \mathcal{H}$ and all t.
- New Goal: minimize stochastic regret over T steps

$$S_{\mathcal{T}} := \mathbb{E} \sum_{t=1}^{T} F(w_t) - T \cdot \min_{w \in \mathbb{R}^d} F(w).$$
(7)

• Each honest participant j maintains a momentum vector to reduce variance

$$m_t^j = \nu_t \nabla f_t^j(w_t) + (1 - \nu_t) m_{t-1}^j,$$
 (8)

where $0 < \nu_t < 1$ is momentum parameter. Then, it makes a local decision

$$w_{t+1}^j = w_t - \eta_t m_t^j. \tag{9}$$

• Ours: Byzantine-Robust distributed online momentum (9) with AGG (5).

For expected loss F(w) and any $x, y \in \mathbb{R}^d$, we assume

Assumption 5 *L*-smoothness. $||\nabla F(x) - \nabla F(y)|| \le L||x - y||$. Assumption 6 μ -strong convexity. $\langle \nabla F(x), x - y \rangle \ge F(x) - F(y) + \frac{\mu}{2} ||x - y||^2$. Assumption 7 Bounded variance. $\mathbb{E}_{\mathcal{D}} ||\nabla f_t^j(w_t) - \nabla F(w_t)||^2 \le \sigma^2$.

Theorem 2

Supposed losses are i.i.d., under Assumptions 5, 6 and 7, if $\eta = O(\frac{1}{\sqrt{\tau}})$ and $\nu = O(\frac{1}{\sqrt{\tau}})$, Byzantine-robust distributed online momentum has a sublinear stochastic regret bound

$$S_{T} = \mathcal{O}\left(\left(1 + \frac{\sigma^{2}}{h}\left(1 + (h+1)C_{\alpha}^{2}\right)\frac{L^{4}}{\mu^{4}}\right)\sqrt{T}\right).$$
 (10)

Numerical Experiments¹

- Softmax regression on the i.i.d. MNIST dataset.
- Measurement: adversarial regret and accuracy.

Byzantine-robust distributed online gradient descent show robustness.

Figure 1: Performance of Byzantine-robust distributed online gradient descent.

 1 More results and codes are available at https://github.com/wanger521/OGD.

Momentum show improvement!

Figure 2: Performance of Byzantine-robust distributed online momentum.

More experiment results on non-i.i.d. data are shown in the paper.

- Investigate Byzantine-robustness of distributed online learning for first time.
- Show tight linear adversarial regret bound for Byzantine-robust distributed online gradient descent.
- Establish sublinear stochastic regret bound for Byzantine-robust distributed online momentum with i.i.d. distribution.

Thank You!