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Online Learning
@ Online learning is a powerful tool to process streaming data.

@ In response to an environment that provides (adversarial) losses sequentially,
an online learning algorithm makes one-step-ahead decisions.

Distributed Online Learning

@ Multiple participants separately collect streaming data, make local decisions.
@ Server aggregates all local decisions to a global one.

@ Applications: online web ranking and online advertisesment recommendation.

Performance of an online learning algorithm is characterized by (adversarial)
regret, and a sublinear (adversarial) regret is perferred.
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But not all participants are honest.

Byzantine Attack

Adversarial participants (called Byzantine participants) can collude and arbitrarily
modify the messages sent to the server.

Is it possible to develop a Byzantine-robust distributed online learning algorithm
with provable sublinear adversarial regret, in an adversarial environment and in the
presence of adversarial participants ?

Answer Is Negative

X Distributed online gradient descent with mean: infinite adversarial regret.
X Even with robust aggregation rules: linear adversarial regret.
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Problem Statement: Adversarial Regret

o Consider n participants in A, h honest in H, b Byzantine in B, n= h+ b.
b1
5

n

@ Suppose the ratio of Byzantine participants is less than half: « :=

@ Goal: minimize adversarial regret over T steps

T T
Ry = Z fr(we) — min. Z fr(w), (1)
t=1 weR
where

fi(w) = 7 3 f(w) 2)

JEH

and ftj is the loss revealed to j € H at the end of step t.
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Byzantine-robust Distributed Online Gradient Descent

Each honest participant j makes its local decision by online gradient descent:
wl = w —n.VF(w), step size . > 0. 3)

o Baseline: distributed online gradient descent (3) with mean aggregation

Server aggregates messages 4+1 (wj from honest and arbitrary from Byzantine)

t+1
1<
Wiy1 = ; 24+1- (4)
j=1

@ Ours: Byzantine-robust distributed online gradient descent (3) with AGG
Werr = AGG(zi11, Zi1, -+ 2041)- (5)

AGG is Robust Bounded Aggregation, if
1 .
— 2 1 2 = 2 2,2 s .
||Wl’+1 - Zt+1|| :HAGG(ZH—I’ZH—I’ t aztn) - Zl’+1|| < CaC y Zt4l = E Zz{erl’
. jeH
where [|Z11 — z,[|* < (2, C, is a constant dependent on « and aggregation.
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Assumptions & Theorem 1

Define Vf(w;) := + = V1l (w;) and w* := arg min,,cpa Z;l fr(w). For any
honest participant’s loss ftf where j € H and any x, y € R? we assume
Assumption 1 L-smoothness. ||V f/(x) - ij( ) < Lljx =yl

Assumption 2 p-strong convexity. (Vf(x),x —y) > f(x) — fj(y) + SlIx — v
Assumption 3 Bounded deviation. ||V (w;) — VF(w,)|]? < o2

Assumption 4 Bounded gradient at the overall best solution.

15 Sjen VA ()| < €.

Under Assumptions 1, 2, 3 and 4, if n = O(%) Byzantine-robust distributed
online gradient descent has a linear adversarial regret bound

Rt = O((C20? + E)VT) + O(C20°T). (6)

We construct a counter-example to demonstrate O(c?T) is tight.

How to derive sublinear regret under Byzantine Attacks?
— Not fully adversarial environment.
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Byzantine-Robust Distributed Online Momentum

@ Not fully adversarial environment: losses are independent and identically
distributed (i.i.d.), meaning f{ ~ D for all j € H and all t.

o Define the expected loss F(w) := Epf!/(w) for all j € # and all t.
@ New Goal: minimize stochastic regret over T steps

Sr:=EY F(w:)— T min F(w). (7)

Rd
t=1 we

@ Each honest participant j maintains a momentum vector to reduce variance

m]t. = VtVftj(Wt) + (1 —ve)m_y, (8)
where 0 < v; < 1 is momentum parameter. Then, it makes a local decision
Wz{ 1= W — nem,. 9)

@ Ours: Byzantine-Robust distributed online momentum (9) with AGG (5).

Xingrong Dong, Zhaoxian Wu, Qing Ling, Zhi Tian ICASSP2023



Assumptions & Theorem 2

For expected loss F(w) and any x,y € RY, we assume

Assumption 5 L-smoothness. ||[VF(x) — VF(y)|| < L||x — y||.
Assumption 6 p-strong convexity. (VF(x),x —y) > F(x) — F(y) + &[x — y|/*.
Assumption 7 Bounded variance. Ep ||V (w;) — VF(w,)||? < o2.

Supposed losses are i.i.d., under Assumptions 5, 6 and 7, if n = O(\%T) and

v= O(%) Byzantine-robust distributed online momentum has a sublinear
stochastic regret bound

Sr=(9<(1+a—;(1+(h+1)cg)/%)ﬁ). (10)
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Numerical Experiments®

@ Softmax regression on the i.i.d. MNIST dataset.
@ Measurement: adversarial regret and accuracy.

Byzantine-robust distributed online gradient descent show robustness.
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Figure 1. Performance of Byzantine-robust distributed online gradient descent.

IMore results and codes are available at https://github.com/wanger521/OGD.
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Numerical Experiments

Momentum show improvement!
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Figure 2: Performance of Byzantine-robust distributed online momentum.

More experiment results on non-i.i.d. data are shown in the paper.
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Conclusion

@ Investigate Byzantine-robustness of distributed online learning for first time.

@ Show tight linear adversarial regret bound for Byzantine-robust distributed
online gradient descent.

@ Establish sublinear stochastic regret bound for Byzantine-robust distributed
online momentum with i.i.d. distribution.

Thank You!
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