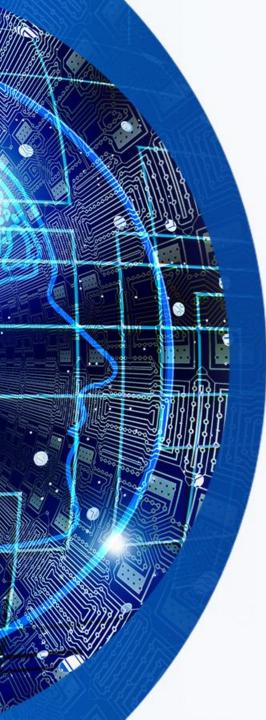


UCO

CROSS-SITE GENERALIZATION FOR IMBALANCED EPILEPTIC CLASSIFICATION

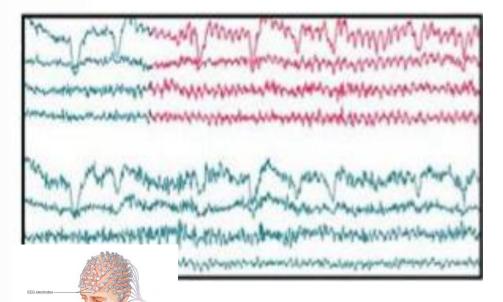
04.06.2023


Tala Abdallah – LARIS – Angers – France Nisrine Jrad – UCO – Angers – France Fahed Abdallah – Lebanese University – Beirut – Lebanon Anne Humeau-Heurtier – LARIS – Angers – France Patrick Van Bogaert – CHU – Angers – France

Context:

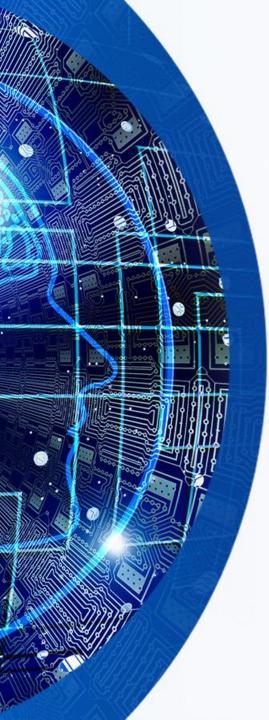
Disorder of normal brain function **Epilepsy** Impacts 2% of the world's population It is defined by the recurrence of epileptic seizures (can lead to a sudden death!!) EEG Electroencephalogram (EEG) Electrodes Brai Consuming time and effort EEG reading Automatic **Solution** seizure detection 2

Challenges:

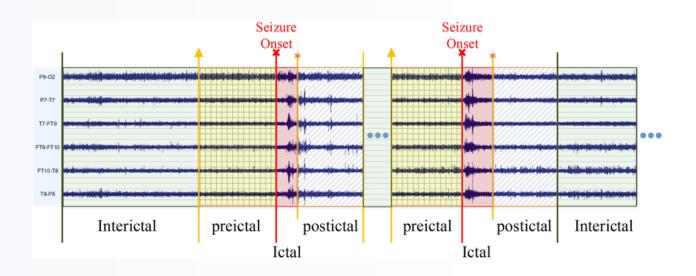

1)Non-stationary, noisy signals

3) EEG signals are imbalanced

4) High inter-subject variability


2)Large amount of data

CHU


ANGERS CENTRE HOSPITALIER UNIVERSITAIRE

Originality and main contribution of the paper:

- 1. Applying data augmentation (DA) techniques on the seizure class followed by the widely used CNN-LSTM classifier.
- 2. Validation of the cross-site generalization ability of our DA-CNN-LSTM method.
- 3. The use of a local data set constitutes a challenge and an important originality of the study which can help other researchers to select widely applicable methods.

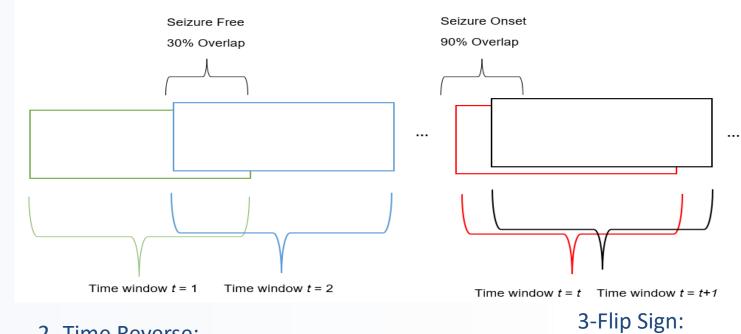
Children Hospital Boston data set (CHB-MIT):

- 24 cases (9 cases were selected for this study)
- Between 9 and 42 continuous .edf files for each case
- One hour of digitized EEG signals in each EDF file
- 18 common electrodes , bipolar montage
- Sampling Frequency of 256 HZ
- 664 EDF files (Records) in total
- 535 files with no seizures
- 129 files with one or more seizures
- 182 seizures

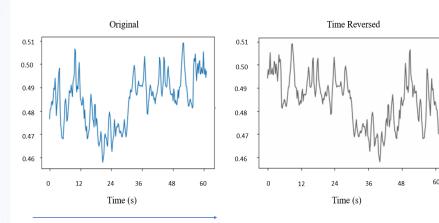
Subject	Gender	Age	# of seizure	Duration (hh: mm: ss)	
chb01	F	11	7	40:33:08	
chb02	Μ	11	3	35:15:59	
chb03	F	14	7	38:00:06	
chb04	Μ	22	4	156:03:54	
chb05	F	7	5	39:00:10	
chb06	F	1.5	10	66:44:06	
chb07	F	14.5	3	67:03:08	
chb08	М	3.5	5	20:00:23	
chb09	F	10	4	67:52:18	
chb10	Μ	3	7	50:01:24	
chb11	F	12	3	34:47:37	
chb12	F	2	27	20:41:40	
chb13	F	3	12	33:00:00	
chb14	F	9	8	26:00:00	
chb15	Μ	16	20	40:00:36	
chb16	F	7	10	19:00:00	
chb17	F	12	3	21:00:24	
chb18	F	18	6	35:38:05	
chb19	F	19	3	29:55:46	
chb20	F	6	8	27:36:06	
chb21	F	13	4	32:49:49	
chb22	F	9	3	31:00:11	
chb23	F	6	7	26:33:30	
chb24	-	-	16	21:17:47	
Total			185	979:56:07	

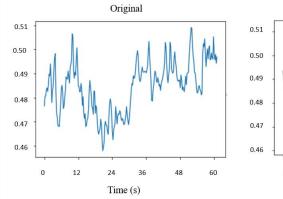
CHU of Angers:

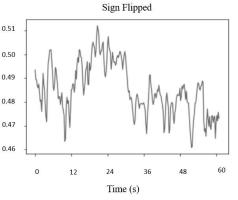
- Ethics approval by the agreement of the CHU Angers committee
- 20 cases aged between 1 and 17
- Between 20 and 45 continuous .edf files for each case
- 48 hours of digitized EEG signals in most of EDF files
- One to seven seizures for each patient
- Between 13 and 19 electrodes , monopolar montage
- Sampling Frequency of 256 HZ
- Around 960 hours of EEG recording

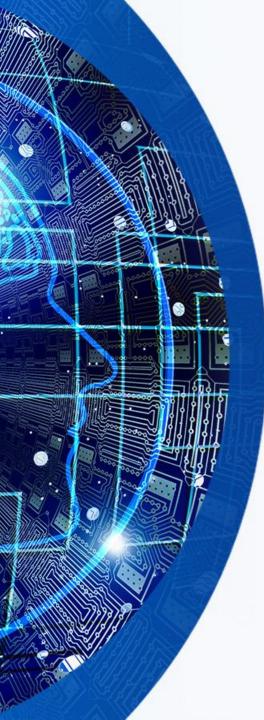


Data Augmentation (DA) Techniques for imbalanced data set NIVERSITÉ CATHOLIQUE DE L'OUES

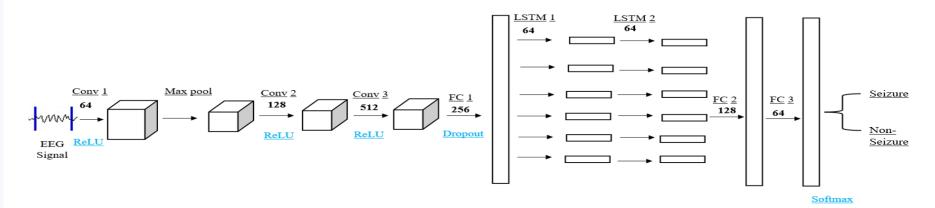



CHU ANGERS CENTRE HOSPITALIER UNIVERSITAIRE


1- Sliding windows:



2- Time Reverse:



CNN-LSTM model

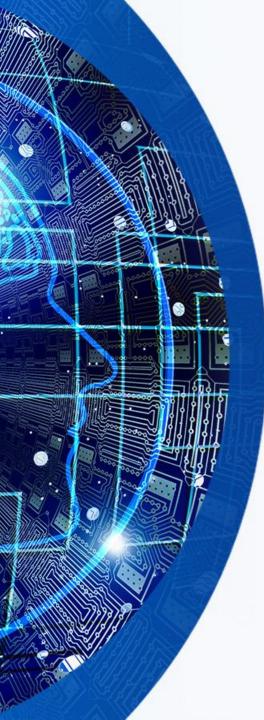
4 experiments:

Experiment 1: Train and test the model on the CHB-MIT data set without using DA techniques

Experiment 2: Same as the first one but using DA techniques

Experiment 3: Train the model on the CHB-MIT data set and test it on the CHU data set without using DA techniques

Experiment 4: Same as the third one but using DA techniques


Results

CNN-LSTM	Accuracy	Precision	Recall	F1-score	
One site	98.3% ± 0.06	93.5% ± 0.08	93.5% ± 0.08	93.5% ± 0.08	
One site - DA	98.7% ± 0.01	97.0% ± 0.01	96.8% ± 0.02	96.9% ± 0.01	
Cross-site	87.3% ± 0.08	86.5% ± 0.07	87.0% ± 0.06	86.9% ± 0.07	
Cross-site - DA	89.9% ± 0.05	89.1% ± 0.02	89.0% ± 0.04	88.9% ± 0.03	

CNN	Accuracy	Precision	Recall	F1-score
One site	97.9% ± 0.12	92.5% ± 0.15	92.0% ± 0.15	92.2% ± 0.15
One site - DA	97.6% ± 0.10	96.0% ± 0.09	96.0% ± 0.10	96.0% ± 0.10
Cross-site	85.8% ± 0.20	85.3% ± 0.23	85.0% ± 0.25	85.1% ± 0.24
Cross-site - DA	89.7% ± 0.18	88.0% ± 0.17	87.0% ± 0.16	88.0% ± 0.17

LSTM	Accuracy	Precision	Recall	F1-score
One site	98.0% ± 0.12	93.0% ± 0.14	92.0% ± 0.13	92.5% ± 0.14
One site - DA	97.8% ± 0.09	96.5% ± 0.07	94.5% ± 0.06	95.5% ± 0.06
Cross-site	86.6% ± 0.21	86.0% ± 0.23	86.5% ± 0.21	86.2% ± 0.22
Cross-site - DA	89.7% ± 0.12	88.7% ± 0.14	88.0% ± 0.13	88.3% ± 0.14


Comparison with state-of-the-art methods

Authors	Years	Methods	Accuracy	Precision	Recall	F1-score
Single-Site: Ozcan et al. [1]	2019	3D CNN	-	-	81.20%	-
Single-Site: Duan et al. [2]	2019	Bi-GRU	94.8%	-	91.7%	-
Single-Site: Sanguk Ryu [3]	2021	Dense-LSTM	93.3%	-	92.9%	92.3%
Cross-Site: Danielle et al.[4]	2021	CNN	-	-	89.3%	-
Our Cross-Site model	2022	CNN-LSTM with DA	98.7%	97.0%	96.8%	96.9%
Our Single-Site model	2022	CNN-LSTM with DA	89.9%	88.5%	89.6%	89.0%

References:

- [1] Ozcan, A. & Erturk, S. Seizure prediction in scalp EEG using 3D convolutional neural networks with an image-based approach. IEEE Transactions On Neural Systems And Rehabilitation Engineering. 27, 2284-2293 (2019)
- [2] Duan, L., Hou, J., Qiao, Y. & Miao, J. Epileptic seizure prediction based on convolutional recurrent neural network with multitimescale. International Conference On Intelligent Science And Big Data Engineering. pp. 139-150 (2019)
- [3] Ryu, S. & Joe, I. A Hybrid DenseNet-LSTM model for epileptic seizure prediction. Applied Sciences. 11, 7661 (2021)
- [4] Currey, D., Hsu, D., Ahmed, R., Venkataraman, A. & Craley, J. Cross-site Epileptic Seizure Detection Using Convolutional Neural Networks.2021 55th Annual Conference On Information Sciences And Systems (CISS). pp. 1-6 (2021)

Conclusion and Future Work

- Very promising results
 - especially on imbalanced data sets
 - model robust to cross-site variability

• Future Work

develop reliable models that can be applied to different types of epilepsy using more sophisticated ML and DA methods.

For any question: tala.abdallah@net.usj.edu.lb