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Power System Modeling
• Modeled using an undirected graph where buses and power lines are
represented by nodes and edges, respectively.
• Spatial aspects: we adopt IEEE 14, 39, and 118-bus systems.
• Temporal aspects: electric power injections and flows.
• Power flow analysis using Newton's method is carried out to
determine the real and reactive power flows in the system.

Benign Samples
• Measurement data during normal operation.
• Include 96 daily power dynamics timestamps over six months.

System Modeling

•We examine task-specific benchmark detectors that perform tasks
separately including auto regressive integrated moving average
(ARIMA), support vector machine (SVM), multi-layer perceptron
(MLP), recurrent neural network (RNN), convolutional neural
network (CNN), autoencoder (AE), convolutional graph neural
network (CGNN), and graph AE (GAE).

Task 1 (system status identification)
• The proposed multi-task GNN detector offers superior DR by 23.2 -
30.1%, 15 - 21.2%, and 9.4 - 11.5% compared to shallow, deep, and
graph-based benchmarks, respectively.

Task 2 (attack localization)
• The proposed multi-task GNN detector offers superior DR by 20.2 -
26.6%, 9.6 - 17.3%, and 4.1 - 5.8% compared to shallow, deep, and
graph-based benchmarks, respectively.

Experimental Results
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A Graph Neural Network Multi-Task Learning-Based Approach 
for Detection and Localization of Cyberattacks in Smart Grids

• Smart grids rely on measurement data to ensure proper supply and
demand management and system stability.

• The cyber-physical nature of smart power grids makes them
vulnerable to false data injection attacks (FDIAs) where malicious
entities manipulate power system measurement data.

• Such attacks can bypass traditional bad data detectors, which lead to
making wrong decisions and may result in system instability.

• Existing FDIA detectors perform one of two tasks, detection or
localization and offer limited detection performance.

Introduction

We propose a multi-task learning graph neural network (GNN)
detector that offers the following:

• It performs two tasks: graph classification to determine the system
status (under attack/normal operation) and node classification to
localize the attack (the attacked node). This is performed efficiently
using a three-stage GNN with joint, task-specific, and fusing layers.

• It captures the complex patterns of measurement data and spatial
aspects of power grids using convolutional Chebyshev graph layers.
It is examined against FDIAs on IEEE 14, 39, and 118-bus systems.

• It makes decisions based on features learned from both tasks and
offers enhanced system status identification and attack localization
with detection rates (DRs) of 98.5-100% and 99-100%, respectively.

Contributions

• Smart power grids are subject to cyber false data injection attacks
(FDIAs) where detection and localization of attacks are critical.

• The proposed detector performs both tasks with improved detection
performance compared to task-specific detectors.

• The proposed there-stage structure helped in boosting the detection
performance since the final decision is based on the outputs of the
two tasks (graph and node classification).

Conclusions

•We adopt three FDIA functions that are used to mimic the power
system's operation under attack.

• Direct attack: randomly applies bounded perturbations into samples.

• Replay attack: uses a false repetition of a reading from a previous
timestamp to replace the reading of a current timestamp.

• General attack: generates malicious samples using a range of true
measurement values.

•We use an equal number of benign and malicious samples.

Attack Data

We propose a multi-task learning-based approach that performs
system status identification and attack localization simultaneously
using a GNN with stacked convolutional Chebyshev graph layers.
The model is divided into three stages:

• The first stage presents the joint graph layers that are used to extract
preliminary features from the data that are needed for both tasks.

• The second stage consists of task-specific graph layers that are
designated to capture relevant features for a specific task.

• The third stage is the final decision of the two tasks based on
previously learned features, which boosts the performance.

• We adopt such a structure to calculate the initial weights and
parameters (shared parameters) once, which are then transmitted to
the next stage for further processing.

Model Architecture

. . .

. .
 .

Joint graph layers (Lj)Input graph

. .
 . 

.

Task 1: Status identification (Graph classification)

Task-specific layers (Ls2)

. . .

Final 
Output

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .. . .

. .
 .

Task-specific layers (Ls1)
. .

 .

Xb, Xm samples
Pi, Qi readings

Dense
layer

Output
layer

Task 2: Attack localization (Node classification)

Dense
layer

Output
layer

Improved
decision

60
70
80
90

100

ARIMA SVM MLP RNN CNN AE CGNN GAE Multitask
GNN

Task 1

60
70
80
90

100

ARIMA SVM MLP RNN CNN AE CGNN GAE Multitask
GNN

Task 2

14-bus 39-bus 118-busSystem size:


