Introduction

* Smart grids rely on measurement data to ensure proper supply and
demand management and system stability.

* The cyber-physical nature of smart power grids makes them
vulnerable to false data injection attacks (FDIAs) where malicious
entities manipulate power system measurement data.

* Such attacks can bypass traditional bad data detectors, which lead to
making wrong decisions and may result in system instability.

* Existing FDIA detectors perform one of two tasks, detection or
localization and offer limited detection performance.

o

Contributions

We propose a multi-task learning graph neural network (GNN)
detector that offers the following:

* It performs two tasks: graph classification to determine the system
status (under attack/normal operation) and node classification to
localize the attack (the attacked node). This i1s performed efficiently
using a three-stage GNN with joint, task-specific, and fusing layers.

* It captures the complex patterns of measurement data and spatial
aspects of power grids using convolutional Chebyshev graph layers.
It 1s examined against FDIAs on IEEE 14, 39, and 118-bus systems.

* It makes decisions based on features learned from both tasks and
offers enhanced system status identification and attack localization
with detection rates (DRs) of 98.5-100% and 99-100%, respectively. y

o

System Modeling

Power System Modeling

* Modeled using an undirected graph where buses and power lines are
represented by nodes and edges, respectively.

» Spatial aspects: we adopt IEEE 14, 39, and 118-bus systems.

* Temporal aspects: clectric power injections and flows.

* Power flow analysis using Newton's method 1s carried out to
determine the real and reactive power flows in the system.

Benign Samples
* Measurement data during normal operation.
* Include 96 daily power dynamics timestamps over six months.
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Attack Data

* We adopt three FDIA functions that are used to mimic the power
system's operation under attack.

* Direct attack: randomly applies bounded perturbations into samples.

* Replay attack: uses a false repetition of a reading from a previous
timestamp to replace the reading of a current timestamp.

* General attack: generates malicious samples using a range of true
measurement values.

* We use an equal number of benign and malicious samples.

Model Architecture

We propose a multi-task learning-based approach that performs
system status 1dentification and attack localization simultaneously
using a GNN with stacked convolutional Chebyshev graph layers.
The model 1s divided 1nto three stages:

* The first stage presents the joint graph layers that are used to extract
preliminary features from the data that are needed for both tasks.

* The second stage consists of task-specific graph layers that are
designated to capture relevant features for a specific task.

* The third stage 1s the final decision of the two tasks based on
previously learned features, which boosts the performance.

* We adopt such a structure to calculate the initial weights and
parameters (shared parameters) once, which are then transmitted to
the next stage for further processing.
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Experimental Results

* We examine task-specific benchmark detectors that perform tasks
separately including auto regressive integrated moving average
(ARIMA), support vector machine (SVM), multi-layer perceptron
(MLP), recurrent neural network (RNN), convolutional neural

network (CNN), autoencoder (AE), convolutional graph neural
network (CGNN), and graph AE (GAE).

Task 1 (system status identification)
* The proposed multi-task GNN detector offers superior DR by 23.2 -

30.1%, 15 - 21.2%, and 9.4 - 11.5% compared to shallow, deep, and
graph-based benchmarks, respectively.

Task 2 (attack localization)
* The proposed multi-task GNN detector offers superior DR by 20.2 -

26.6%, 9.6 - 17.3%, and 4.1 - 5.8% compared to shallow, deep, and
graph-based benchmarks, respectively.
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Conclusions

* Smart power grids are subject to cyber false data injection attacks
(FDIAs) where detection and localization of attacks are critical.

* The proposed detector performs both tasks with improved detection
performance compared to task-specific detectors.

* The proposed there-stage structure helped in boosting the detection
performance since the final decision 1s based on the outputs of the

5 two tasks (graph and node classification). )

Acknowledgment

This work 1s supported by NSF EPCN Awards 2220346 and 2220347.




