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ABSTRACT
We present the first neural network model to achieve real-

time and streaming target sound extraction. To accomplish this,
we propose Waveformer, an encoder-decoder architecture with
a stack of dilated causal convolution layers as the encoder, and
a transformer decoder layer as the decoder. This hybrid archi-
tecture uses dilated causal convolutions for processing large re-
ceptive fields in a computationally efficient manner, while also
leveraging the generalization performance of transformer-based
architectures. Our evaluations show as much as 2.2–3.3 dB im-
provement in SI-SNRi compared to the prior models for this
task while having a 1.2–4x smaller model size and a 1.5–2x
lower runtime. We provide code, dataset, and audio samples:
https://waveformer.cs.washington.edu/.

Index Terms— Sound selection, streaming, attention

1. INTRODUCTION

Humans are exceptionally adept at attending their auditory focus to
specific sounds even in a noisy environment [1]. Recent works that
aim to create a computational equivalent of this human capability
formulate this problem as target sound extraction [1, 2, 3]. The
goal is to extract sound signals of interest from a mixture of vari-
ous overlapping sounds, given clues that provide information about
the target sound class such as embeddings of a one-hot label [1],
audio clips [3, 4], and images [5, 6]. Streaming target sound extrac-
tion could enable real-time intelligent acoustic applications for head-
phones, hearing aids, and telephony by filtering out undesired sounds
from the environment (e.g., traffic) and presenting only sounds of in-
terest to the user (e.g., sirens).

Recent works on target sound extraction have shown promising
performance even for mixtures containing a large number of sound
classes [1]. However, none of these prior works demonstrate real-
time streaming capabilities. In particular, the prior works for this
task are based on non-streaming models and designed for offline pro-
cessing, where the neural network has access to a large block (≥ 1 s)
of audio samples [1]. In contrast, real-time streaming applications
impose significant algorithmic and computational constraints, re-
quiring networks to operate on small blocks (≤ 10 ms) with a limited
number of lookahead samples for each block. All these factors can
significantly degrade the performance [7].

In this paper, we present the first deep learning method to per-
form target sound extraction in a streaming manner. Fig. 1 shows
Waveformer, our encoder-decoder architecture where the encoder is
a stack of dilated causal convolution (DCC) layers and the decoder
is a transformer decoder [8].1 Our intuition is that much of the com-

1We call our network, Waveformer, since it uses a hybrid architecture with
the causal convolution layers, common in WaveNet [9] based architectures,
as the encoder and a transformer as the decoder.

plexity in prior models comes with processing large receptive fields,
especially at high sampling rates. For example, recent transformer-
based architectures proposed for speech separation [10, 11] imple-
ment chunk-based processing, where each chunk independently at-
tends to all the chunks in the receptive field. Thus, to achieve a
receptive field of length R, for each chunk, these models have an
O(R) computational complexity. Instead, since DCC layers have
a complexity of O(logR) for achieving the same amount of recep-
tive field (§3.1), we use a stack of DCC layers as the encoder that
processes the receptive field. We then use the decoder layer of the
transformer architecture [8] as our model’s decoder. The decoder
generates a mask that can extract the specified target sound to pro-
duce the output signal.

To evaluate our network architecture, we implement a causal
version of Conv-TasNet and a streaming version of ReSepformer [10]
for the task of streaming target sound extraction. Evaluations show
that our hybrid network architecture achieves state-of-the-art perfor-
mance for this task. Further, the smallest and largest versions of our
model have real-time factors (RTFs) of 0.66 and 0.94, respectively,
on a consumer-grade CPU, demonstrating the real-time target sound
extraction capability, thus outperforming prior models in terms of
both efficiency and signal quality.

2. RELATED WORK

Universal sound separation. The task here is to decompose a mix-
ture of arbitrary sound types into their component sounds, regard-
less of the number of sounds in the mixture [12]. This becomes
increasingly challenging as the number of possible sound types in
the mixture increases. Several networks have been proposed for this
task including convolutional long short-term memory networks [12],
time-dilated convolution networks [12] based on Conv-TasNet [7],
and transformer networks [13]. Prior work also proposed the use of
embeddings learned by a sound classifier trained on a large sound
ontology [14] for conditioning a separation network.

Target sound extraction. This approach can circumvent the chal-
lenge of universal sound separation struggling to deal with a mixture
of a large number of sounds. The clues may be provided as an em-
bedding of an audio clip [3, 4], an image [5, 6], natural language
text [15, 16], onomatopoeic words [17], or a one-hot sound label
vector [1]. The prior works [18, 19] have also evaluated the use of a
sound event detector to detect the time when the target sound occurs
in a mixture. Although these works are often motivated for practical
usage [16, 1], none of them use streaming models. In contrast to
these prior works, we design the first streaming network for target
sound extraction using attention.

Speech-specific networks. Prior work has also focused on speech
enhancement [20, 21, 22], speech separation [7, 23, 24, 25, 26,
27, 28] and speech selection using clues provided to the net-
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Fig. 1: Waveformer architecture. Streaming inference demonstrated using an example input mixture segment of length 4L samples,
corresponding to a chunk length K = 4. The query is a one-hot or a multi-hot label encoding. The Dilated Causal Convolution (DCC)
encoder encodes the input chunk yk using the context computed from the receptive field. The transformer decoder computes the target mask
by attending to current and previous encoded chunks.

work [29, 30, 31, 32]. For speech enhancement, neural networks
have been proposed [21, 33] to realize real-time operation. Re-
cently, efficient transformer-based architectures have been proposed
for speech recognition and separation tasks [34, 11, 35]. These
methods either use standard transformer blocks [10] or convolution-
augmented transformer blocks [11, 35]. In contrast, we use DCC
layers along with the transformer decoder. Recent work on ReSep-
former [10] proposed a causal mode for their transformer method,
which we use for our baseline comparisons.

3. WAVEFORMER ARCHITECTURE

We process individual audio chunks of duration τ seconds. For
streaming, we need to operate at the chunk level: an output chunk
can depend on the current and past chunks. Thus, streaming mod-
els have an intrinsic latency equal to the duration of a single chunk.
In real-time practical systems, it is desirable that this latency is on
the order of 10 ms [36]. Fig. 1 shows our proposed time-domain
model architecture, which employs an encoder-decoder 2based mask
generation network to generate an element-wise multiplicative mask
in the latent space. Let xk ∈ RS denote the current input audio
chunk, where S = τFs is the number of audio samples included
in the current chunk with a sampling rate of Fs. In the first step, a
1D-convolution layer with stride L and kernel size 3L is applied to
the input audio chunk xk to obtain the latent space representation,
yk ∈ RE×K , where E is the latent space feature dimensions and
K = S

L
is the feature sequence length in the latent space. Setting

the kernel size to 3L and stride to L requires an overlap of L samples
with the previous and the future chunk, resulting in a lookahead of

2Our use of encoder and decoder is in the context of mask generation.
In contrast, Conv-TasNet [7] uses those terms for input Conv1d and output
ConvTranspose1D, respectively.

2L samples. In our experiments, we set L = 32 samples at 44.1 kHz.
This results in a lookahead of around 1.45 ms, which is negligible.
Given a one-hot or multi-hot query vector q ∈ {0, 1}Nc , where Nc

is the total number of classes, streaming target sound extraction is
achieved by computing feature masks mk ∈ RE×K . With the mask
generation network and element-wise multiplication denoted as M
and ⊙, respectively, the target sound signal, x̂k ∈ RS , is computed
as:

yk =Conv1d(xk), mk = M(yk | yk−1, .., y2, y1, q)

x̂k =ConvTranspose1d(yk ⊙mk).

3.1. Dilated causal convolution encoder

Our encoder is a stack of dilated causal convolution (DCC) layers
[9], and the decoder is a transformer network [8]. The motivation
for such an architecture is that the encoder computes a contextful
representation of the input chunk, considering the previous chunks
up to a certain receptive field, and the decoder conditions the encoder
output with the query vector to estimate the target mask. While re-
cent transformer models for speech separation [34, 10] have demon-
strated performance gains over convolution-based methods [7], the
latter have generally been more computationally efficient.

We attribute this efficiency gap to the difference in the way
existing transformer models process the receptive field compared
to convolution-based architectures. To achieve a receptive field of
length R, given the chunk-based processing in existing transformer
architectures, each chunk individually attends to all previous chunks
in the receptive field resulting in O(R) complexity. In contrast,
convolution based models [9, 7] using a stack of M DCC lay-
ers with kernel size P and exponentially scaling dilation factors
{20, 21, 22, ..., 2M−1} have a receptive field of (P − 1) · (2M − 1).



Its complexity is O(PM). With a small kernel size P , the computa-
tional complexity of the stacked DCC layers is O(P ·log (1+ R

P−1
))

∼ O(logR) for it to have a receptive field of length R.
We use 10 DCC layers with a kernel size of 3 and dilation fac-

tors {20, 21, 22, ..., 210−1} in our encoder, resulting in a receptive
field of (3 − 1) · (210 − 1) = 2046 samples in the latent space.
With the initial input convolution stride L set to 0.73 ms, our en-
coder’s receptive field is ≈ 1.5s. Fig. 1 (b) shows an encoding of an
input chunk of length 4. For chunk-based streaming inference, the
encoder maintains a context buffer for each DCC layer. This context
is initially computed from the 1s receptive field and then updated
dynamically after encoding each subsequent chunk. For encoding
a chunk, each DCC layer is fed with the output chunk of the pre-
vious layer, left padded with the context of length twice the layer’s
dilation. After encoding a chunk, the context is updated with the
rightmost elements of the padded input for it to be used in encoding
the next chunk. For each input chunk yk, the DCC encoder computes
an encoded representation, ek ∈ RE×K .

3.2. Query-conditioned transformer decoder

To get the mask, the encoded representation computed above must be
conditioned with the query, q. To this end, we first compute an em-
bedding, l ∈ RE×1, corresponding to q. This is achieved by using
an embedding layer comprising three 512-dimensional feed-forward
sub-layers with an NC -dimensional input and an E-dimensional out-
put. Our transformer decoder conditions the encoded chunk ek with
the query embedding l and derives the mask as follows.

Fig. 1 (c) shows our decoder architecture. First, we perform
multiplicative query integration [1, 3] to compute the conditioned
representation: ek

′ = ek ⊙ l. Since transformers are more com-
putationally expensive with higher dimensionality, we first project
the encoded representations, ek′ and ek, to the decoder dimensions
D ≤ E with 1 × 1 convolution. This results in projected encoded
representations, pek, pek

′ ∈ RD×K . The decoded representations
are then computed by passing pek, pek

′ to the transformer decoder
layer’s self-attention and cross-attention blocks, respectively, to ob-
tain target mask pmk ∈ RD×K in the projected decoder space. It
is then projected back to the encoder dimensions with another 1× 1
convolution layer to obtain mk

′ ∈ RE×K . Since the bottleneck
caused by the projection layers might affect the flow of gradients, as
depicted in the diagram, we use a skip connection immediately after
the multiplicative query integration to the output of the projection
layer to compute the final mask: mk = mk

′ + ek
′.

Within the decoder, we use the chunk-based streaming attention
scheme proposed in [37]. As shown in Fig. 1(c), for decoding the
current chunk, ek, the transformer decoder only attends to the sam-
ples in the current chunk, ek, and one previous chunk, ek−1. This
ensures that the input length to the transformer decoder is fixed at
2K (current chunk + one previous chunk) and prevents the inference
time from growing as the input audio length increases.

4. EXPERIMENTS AND RESULTS

Dataset. We use a synthetic sound mixture dataset created from the
FSD Kaggle 2018 dataset [38]. FSD Kaggle 2018 is a set of sound
event and class label pairs, with 41 different sound classes, which
are a subset of the Audioset ontology [14]. Our synthetic dataset
consists of 50k training samples, 5k validation samples, and 10k test
samples. Sound mixtures are created using the Scaper toolkit [39]
with FSD Kaggle 2018 and TAU Urban Acoustic Scenes 2019 [40]
as foreground and background sources, respectively. Foreground

Table 1: Performance on the single-target extraction task. In our
model, E and D correspond to encoder and decoder dimensionali-
ties, respectively. RTF is the real-time factor for a consumer CPU.

Model Model size RTF SI-SNRi

Conv-TasNet 4.57M 1.34 6.14
ReSepformer 13.24M 1.60 7.26
Ours (E = 256; D = 128) 1.10M 0.66 9.02
Ours (E = 256; D = 256) 1.69M 0.75 9.40
Ours (E = 512; D = 128) 3.29M 0.88 9.26
Ours (E = 512; D = 256) 3.88M 0.94 9.43

Table 2: SI-SNRi comparison in the multi-target extraction task.

# selected classes
Model 1 2 3 Mean

Conv-TasNet 7.20 3.63 0.19 3.67
ReSepformer 7.42 3.56 0.33 3.77
Ours (E = 256; D = 128) 9.06 4.78 1.51 5.11
Ours (E = 256; D = 256) 9.12 4.76 1.31 5.06
Ours (E = 512; D = 128) 9.39 4.92 1.39 5.23
Ours (E = 512; D = 256) 9.29 4.92 1.35 5.19

sound classes are randomly sampled without replacement so that
each sample has 3-5 unique classes. We construct the sound mix-
tures by sampling 3-5s crops from each foreground sound and then
pasting them on a 6s background sound. The SNRs of the fore-
ground sounds are randomly chosen between 15 and 25 dB, relative
to the background sound. Our training and validation data are sam-
pled from the development splits of FSD Kaggle 2018 and TAU Ur-
ban Acoustic Scenes 2019, while our test samples are from the test
splits. From each mixture, up to 3 foreground sounds are randomly
selected as targets. During training, the choices of the target fore-
ground sounds in the training set are randomized. Since we mainly
consider human listening applications for streaming target sound ex-
traction, we run our experiments at a 44.1 kHz sampling rate to cover
the full audible range.

Evaluation setup. Prior works [1, 3] show that Conv-TasNet, orig-
inally proposed for speech separation, can also be used for target
sound extraction. Further, ReSepformer proposes an efficient trans-
former architecture for speech separation that allows a streaming in-
ference. Here, we compare the performance of our architecture with
the causal or streaming implementations of Conv-TasNet and Re-
Sepformer as described in the original papers [7, 10] for the target
sound extraction task.

For all the models, we set the stride of the initial convolution,
L, to 32, which is about 0.73 ms at 44.1 kHz. We train multiple
configurations of our model with different encoder and decoder di-
mensions. We fix the number of DCC layers to 10, the number of
transformer layers to 1, and the chunk length, K, to 13. This chunk
length corresponds to 416 samples in the time domain or a chunk
duration of 9.43 ms. For Conv-TasNet, we follow the configura-
tion used in [1] except for the number of repeats, which we set to
2. This ensures that the runtime of the Conv-TasNet baseline is not
too large compared with that of our model’s largest configuration.
For the ReSepformer baseline, we set the model dimensionality to
512, the number of blocks to 2, the number of transformer layers to
2, and the chunk size to 13 (9.43 ms). We perform label integration
after the first transformer block, as we found it to perform better than
integrating it at the beginning.

Loss function and training hyper-parameters. We use a lin-
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multi-target extraction (x-axis represents time).

ear combination of 90% signal-to-noise-ratio (SNR) and 10% scale-
invariant-signal-to-noise-ratio (SI-SNR) [41] as the loss function for
training. We set the initial learning rate to 5e-4 for our models and
Conv-TasNet, and to 1.5e-4 for ReSepformer. We train the models
for 100 epochs and choose the model after the epoch that resulted in
the best validation SI-SNRi.

Results. We separately train the models for single-target and multi-
target extraction tasks and evaluate them on our testset. For multi-
target evaluation, we train our model as well as baselines to make
predictions with multi-hot query vectors, as opposed to one-hot
queries used in the single-target evaluation. During the multi-target
training, 1-3 foreground sounds are randomly selected as target
sounds. This training method using an arbitrary number of target
sources helps the model learn multi-target embeddings. The same
model configurations are used for both the single-target and multi-
target experiments. The Conv-TasNet and ReSepfromer baselines
are also trained in the same way for the multi-target extraction task.

We also evaluate the real-time factors (RTFs) of the models on
an Intel Core i5 CPU using a single thread. RTF is computed by
measuring the runtime consumed by the models to process a 416
sample audio chunk (9.43 ms at 44.1 kHz), and dividing that by
the chunk duration, 9.43 ms. For the RTF measurement, we in-
clude the padding for dilated convolution layers in our model’s DCC
encoder and Conv-TasNet’s Temporal Convolution Network (TCN)
blocks, accounting for the entire receptive field. In the case of the
ReSepformer, using a single chunk for RTF measurement excludes
the overhead caused by causal attention masking in its inter-attention

Table 3: Performance comparison with non-causal baselines.

Model SI-SNRi

Listen to What You Want [1] 9.91
Ours (E = 512; D = 256; Non-causal) 10.50
Ours (E = 512; D = 256; Non-causal; PIT+OS) 11.31

blocks. Consequently, the RTF value reported for ReSepformer is a
lower bound of what is practically achievable.

Table 1 compares our models with different configurations with
the baselines in terms of both efficiency and performance. We show
that our approach results in 2.2-3.3 dB SI-SNRi improvement com-
pared with the baselines while being 1.5-2x more computationally
efficient with 1.2-4x fewer parameters. Table 2 compares the per-
formance of our models with the baselines for the multiple target
extraction task. It shows that our method outperforms the base-
lines by 1.2-1.4 dB for the 2-target case and 1-1.2 dB for the 3-
target case. As with prior work [1], the SI-SNR improvements are
lower in the 3-target selection task since there is greater similarity
between the input mixture and the target signal, compared to the
single-target case, resulting in a larger input SI-SNR. We obtained
p-values < 0.05 for all comparisons except for the comparison be-
tween (E = 512;D = 256) and (E = 256;D = 256), for which
the p-value was 0.57.

In Fig. 2, we qualitatively show an example of single-target ex-
traction and multi-target extraction from a 4-class input mixture, us-
ing our multi-target extraction model. Fig. 2a shows the input mix-
ture waveform, and Figs. 2b and 2c show the isolated ground-truth
sounds. We provide the input mixture to our multi-target model,
with a single-target query followed by a two-target query. Figs. 2d
and 2e are the output waveforms obtained when the single target and
the two targets are queried, respectively. The waveforms show that
the model successfully recognizes the queried events and extracts the
relevant sounds. It can also be observed that our model preserves the
original amplitudes of the sounds in the input mixture well.

We also implemented a non-causal version of the proposed
Waveformer. The dilated causal convolution (DCC) block was made
non-causal by padding on both sides of each DCC layer’s input
sequence, while the causal version only padded to the left. The
non-causal transformer decoder attends to the previous and next
chunks, in addition to the current chunk. Following [1], we trained
our non-causal model with both one-hot/multi-hot based extraction
and Permutation Invariant Training + Oracle Selection (PIT + OS)
objectives. Table 3 compares the performance of the non-causal
version of our model with non-causal baselines. The performance
of our causal model is only 1.1 dB less than the non-causal version,
in contrast, to the 3–5 dB observed in prior source separation works
[7, 10]. We achieve this resilience by using layer normalization
throughout our architecture (avoiding the gLN to cLN switch in
[7, 10]) and a small context length for the transformer decoder.

5. CONCLUSIONS

We demonstrate the first deep learning method for real-time and
streaming target sound extraction. Future work includes the use of
more constrained computing platforms, larger datasets with more
classes, and multiple microphones. Our Waveformer architecture
may be applicable to other acoustic applications like source separa-
tion and directional hearing, which deserves further exploration.
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