Improved Deep Speaker Localization and Tracking: Revised Training Paradigm and Controlled Latency Alexander Bohlender, Liesbeth Roelens, and Nilesh Madhu

IDLab, Department of Electronics and Information Systems, Ghent University - imec, Belgium

Alexander.Bohlender@UGent.be, Liesbeth.Roelens@gmail.com, Nilesh.Madhu@UGent.be

Introduction

- Frequency index $f \in \{0, \ldots, F'\}$, F': Nyquist
- Frame index *t*
- Source index $j \in \{1, \ldots, J\}$ (above: J = 2)
- Microphone index $m \in \{1, \ldots, M\}$
- (Azimuth) direction of arrival (DOA) $\varphi_i(t)$

Goal

Estimate and track the DOAs of *moving* talkers with a deep neural network (DNN) trained with simulated data.

Prior Work

Convolutional neural network (CNN) based on [1] with LSTM extension and training data generation of [2]

phase spectrograms $\angle \mathbf{Y}(f,t) = [\angle Y_1(f,t),...,\angle Y_M(f,t)]$ Input: \rightarrow DOA information in interchannel time differences Output: posterior probabilities of source activity for each DOA of the discrete grid $\varphi \in \{0^\circ, 5^\circ, \dots, 355^\circ\}$ \rightarrow classification problem with I = 72 classes

Training data generation

$\mathbf{Y}(f,t) = \sum_{i=1}^{n} A_j(t) \, \mathbf{X}_j(f,t) + \mathbf{V}(f,t)$ (1)

Activity A _j (t):	sources can be active $(A_j(t) = 1)$ or inactive $(A_j(t) = 0)$ at different times, transition between these two states with defined probability				
Source $\mathbf{X}_{j}(f, t)$:	time domain convolution of clean speech with simulated room room impulse re- sponses (RIRs)				
DOAs:	newly selected every time a source becomes active $(A_i(t) = 1, A_i(t-1) = 0)$				
Noise V (<i>f</i> , <i>t</i>):	spatially diffuse but temporally uncorre- lated, random source-to-noise ratio				

Detecting sudden changes 🗸

Modeled by source activity $A_i(t)$ and random DOA changes.

Tracking continuous trajectories of moving talkers **X** Special case (jumps only between neighboring DOA classes), but not explicitly modeled.

Improved Moving Speaker Tracking

Simulation of moving speakers during training

Biased random walk model for *j*th source DOA:

$$\varphi_{j,q} = \varphi_{j,q-1} + D_{j,q} \Delta \widetilde{\varphi}$$
 (2)

Segment q:	fixed source location in each short segment $q \in \{1, \ldots, Q_j\} \rightarrow$ clean speech can still be convolved with pregenerated RIRs to obtain $\mathbf{X}_j(f, t)$ (no need for an online simulation of
	the room acoustics)
Direction <i>D_{j,q}</i> :	movement in positive $(D_{j,q} = +1)$ or in neg-
	ative $(D_{j,q} = -1)$ direction, direction changes
	with defined probability

determined by the grid resolution (here 5°) Step size $\Delta \widetilde{\varphi}$:

Motivation

Simple model permits easy online training data generation. Yet, accounting for different angular velocities, sourcearray distances, and movement directions still enables a good generalization to real-world scenarios.

To cope with both types of DOA changes, embed gradual movements (2) into jumping sources framework (1).

Latency controlled bidirectional LSTM

Forward LSTM: unlimited context of past framers, continuously updated state

	t-5 4512	t-4 4512	t-3 4512	t-2 4512	t-1 $\downarrow 512$	$512 \checkmark t$
+	LSTM state	LSTM State	LSTM state			LSTM
	3 84	→ 384	→384	→384	→ 384	384

Backward LSTM: limited context of T_r future frames, state determined based on a different short subsequence in each frame (here: $T_r = 5$)

<i>t</i> ↓51	2	<i>t</i> +1 ↓51	2	<i>t</i> +2 ↓51	2	<i>t</i> +3 ↓51	2	<i>t</i> +4 ↓51	2 5	<i>t</i> +5 12 ↓
LSTM	(state	LSTM	s tate	s e LSTM	(state	s e LSTM	k state	s e LSTM	s tate	s LSTM
↓12	.8									

Preserve output dimensions: concatenate 384 features from forward, 128 features from backward ($\Sigma = 512$) \rightarrow combination forms latency controlled bidirectional LSTM (LC-BLSTM) [3].

Motivation

DOAs typically change slowly over time \rightarrow future context can be helpful. Controlled latency may still be acceptable for real-time applications.

relatively diffuse pub noise recording array: triangular configuration of 3 microphones The localization accuracy (fraction of correct DOA estimates) with a tolerated error of 7.5° is used to measure performance.

Quantitative analysis

A)	Trai
	mo
	talk
B)	Min
Ţ	ing
C)	Furt

Qualitative Analysis

DNN output (posterior probabilities) for an example with one talker and SNR = 5 dB (dotted red line is ground truth):

4 Evaluation

$$\mathbf{Y}(f,t) = \sum_{j=1}^{J} \mathbf{X}_{j}(f,t) + \mathbf{V}(f,t)$$

4.2 cm $X_i(f, t)$: individually recorded 4 talkers in 3 rooms (12 in to-

4.2 cm

- tal) moving around a table in 2 different scenarios: 1) continuous movement while speaking, 2) walk several steps only between two utterances

ining with gradual movements improves localization of ving talkers by 10-20%, scores do not deteriorate when kers are stationary during speech activity

nor but consistent increase (up to 5%) only of the *mov*talker localization accuracy

ther improvement by combining both modifications

Conclusions

References

- *Processing*, vol. 13, no. 1, pp. 8–21, 2019.

unec

• Model movement trajectories in training by small jumps between neighboring discrete DOAs

 \rightarrow Smooth tracking of real moving talkers

 \rightarrow Simple model is sufficient, no complex online simulation of the room acoustics is needed

• LC-BLSTM incorporates strictly limited future context

 \rightarrow Information from a small number of frames may be less reliable, could give rise to increased sensitivity to noise \rightarrow Moving talker localization still improves slightly overall

[1] S. Chakrabarty and E. A. P. Habets, "Multi-speaker DOA estimation using deep convolutional networks trained with noise signals," IEEE Journal of Selected Topics in Signal

[2] A. Bohlender, A. Spriet, W. Tirry, and N. Madhu, "Exploiting temporal context in CNN based multisource DOA estimation," IEEE/ACM Transactions on Audio, Speech, and Lan*guage Processing*, vol. 29, pp. 1594–1608, 2021.

[3] Y. Zhang, G. Chen, D. Yu, K. Yao, S. Khudanpur, and J. Glass, "Highway long short-term memory RNNs for distant speech recognition," in Proc. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2016, pp. 5755–5759.