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1 Introduction
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• Frequency index f ∈ {0, . . . , F ′}, F ′: Nyquist
• Frame index t
• Source index j ∈ {1, . . . , J } (above: J = 2)
• Microphone index m ∈ {1, . . . ,M }
• (Azimuth) direction of arrival (DOA) ϕj (t )
Goal
Estimate and track the DOAs of moving talkers with a deep
neural network (DNN) trained with simulated data.

2 Prior Work
Convolutional neural network (CNN) based on [1] with LSTM
extension and training data generation of [2]
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Input: phase spectrograms ∠Y(f ,t )= [∠Y1(f ,t ),...,∠YM (f ,t )]
: DOA information in interchannel time differences

Output: posterior probabilities of source activity for each
DOA of the discrete grid ϕ ∈ {0°, 5°, . . . , 355°}
: classification problem with I = 72 classes

Training data generation

Y(f , t ) =
J∑

j=1

Aj (t ) Xj (f , t ) + V(f , t ) (1)

Activity Aj (t ): sources can be active (Aj (t ) = 1) or inactive
(Aj (t ) = 0) at different times, transition be-
tween these two states with defined proba-
bility

Source Xj (f , t ): time domain convolution of clean speech
with simulated room room impulse re-
sponses (RIRs)

DOAs: newly selected every time a source becomes
active (Aj (t ) = 1, Aj (t − 1) = 0)

Noise V(f , t ): spatially diffuse but temporally uncorre-
lated, random source-to-noise ratio

Detecting sudden changes ✓

Modeled by source activity Aj (t ) and random DOA changes.

Tracking continuous trajectories of moving talkers ✗

Special case (jumps only between neighboring DOA
classes), but not explicitly modeled.

3 Improved Moving Speaker Tracking
Simulation of moving speakers during training
Biased random walk model for j th source DOA:

ϕj ,q = ϕj ,q−1 + Dj ,q ∆ϕ̃ (2)
Segment q : fixed source location in each short segment

q ∈ {1, . . . ,Q j } : clean speech can still be
convolved with pregenerated RIRs to obtain
Xj (f , t ) (no need for an online simulation of
the room acoustics)

Direction Dj ,q : movement in positive (Dj ,q = +1) or in neg-
ative (Dj ,q = −1) direction, direction changes
with defined probability

Step size ∆ϕ̃: determined by the grid resolution (here 5°)
Motivation
Simple model permits easy online training data genera-
tion. Yet, accounting for different angular velocities, source-
array distances, and movement directions still enables a
good generalization to real-world scenarios.

To cope with both types of DOA changes, embed gradual move-
ments (2) into jumping sources framework (1).

Latency controlled bidirectional LSTM
Forward LSTM: unlimited context of past framers, continuously
updated state
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Backward LSTM: limited context of Tr future frames, state de-
termined based on a different short subsequence in each
frame (here: Tr = 5)
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Preserve output dimensions: concatenate 384 features from
forward, 128 features from backward (Σ = 512) : combination
forms latency controlled bidirectional LSTM (LC-BLSTM) [3].

Motivation
DOAs typically change slowly over time : future context can
be helpful. Controlled latency may still be acceptable for
real-time applications.

4 Evaluation

Y(f , t ) =
J∑

j=1

Xj (f , t ) + V(f , t )
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Xj (f , t ): individually recorded 4 talkers in 3 rooms (12 in to-
tal) moving around a table in 2 different scenar-
ios: 1) continuous movement while speaking, 2) walk
several steps only between two utterances

V(f , t ): relatively diffuse pub noise recording
array: triangular configuration of 3 microphones

The localization accuracy (fraction of correct DOA estimates)
with a tolerated error of 7.5° is used to measure performance.

Quantitative analysis
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type of movement:
continuous trajectory
between utterances
only low-level ambient noise
SNR = 10dB
SNR = 0dB
J = 1 speaker
J = 2 speakers (concurrent)

A)

B) C)

A) Training with gradual movements improves localization of
moving talkers by 10-20%, scores do not deteriorate when
talkers are stationary during speech activity

B) Minor but consistent increase (up to 5%) only of the mov-
ing talker localization accuracy

C) Further improvement by combining both modifications

Qualitative Analysis
DNN output (posterior probabilities) for an example with one
talker and SNR = 5dB (dotted red line is ground truth):
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L1) Baseline: only updates estimate when true DOA has
already changed significantly : delay of up to a few
seconds in the tracking of a continuous movement

2 vs. 1) Smooth tracking of continuous source trajectories
R vs. L) Limited future context helps to, e. g., detect the end

of an utterance more quickly, but adversely affects
robustness (high probabilities at false locations)

5 Conclusions
• Model movement trajectories in training by small jumps be-
tween neighboring discrete DOAs
: Smooth tracking of real moving talkers
: Simple model is sufficient, no complex online simulation

of the room acoustics is needed
• LC-BLSTM incorporates strictly limited future context
: Information from a small number of frames may be less

reliable, could give rise to increased sensitivity to noise
:Moving talker localization still improves slightly overall
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