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Overview

AI tools are one of the main driving forces behind 6G

They are capable of producing accurate, but not trustworthy, models

In this work, we leverage Conformal Prediction (CP)1 to ensure
formal guarantees on reliability

Application to demodulation

1V. Vovk, A. Gammerman, and G. Shafer, Algorithmic Learning in a Random World, Springer, 2005.
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Calibration of AI
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AI models typically output a hard decision, along with a confidence
level (or, conversely, an uncertainty level).
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Calibration of AI
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When failing, conventional deep learning-based AI systems tend to
make incorrect decisions confidently.2

2G. Guo, et al, “On calibration of modern neural networks,” in Proc. International conference on machine learning (ICML),
2017.
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Calibration of AI

Bayesian learning 3,4

▶ increases computational complexity as compared to conventional
learning (by ensembling)

▶ does not provide formal finite-sample calibration guarantees

Post-hoc calibration schemes
▶ address complexity by operating on a pre-trained model
▶ can provide formal finite-sample calibration guarantees (conformal

prediction5,6)

.

3E. Angelino, et al, “Patterns of Scalable Bayesian Inference,” Foundations and Trends in Machine Learning, 2016.
4O. Simeone, et al, “Machine Learning for Engineers,” Cambridge University Press, 2022.
5V. Vovk, A. Gammerman, and G. Shafer, Algorithmic Learning in a Random World, Springer, 2005.
6J. Cherian and L. Bronner, “How the Washington Post estimates outstanding votes for the 2020 presidential election”.
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Post-Hoc Calibration

Some post-hoc calibration algorithms recalibrate a probabilistic model
by matching accuracy estimated on a validation set.
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model parameter θ

▶ Temperature scaling, Platt scaling, isotonic regression
▶ No guarantee of calibration: may overfit the validation set7,8

7A. Kumar, et al, “Verified Uncertainty Calibration,” NeurIPS 2019.
8X. Ma and M. B. Blaschko, “Meta-Cal: Well-controlled Post-hoc Calibration by Ranking,” ICML 2021.
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Post-Hoc Calibration

Some post-hoc calibration algorithms recalibrate a probabilistic model
by matching accuracy estimated on a validation set.
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▶ No guarantee of calibration: may overfit the validation set7,8

7A. Kumar, et al, “Verified Uncertainty Calibration,” NeurIPS 2019.
8X. Ma and M. B. Blaschko, “Meta-Cal: Well-controlled Post-hoc Calibration by Ranking,” ICML 2021.
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Conformal Prediction

Conformal prediction produces set predictors.

A set predictor is less informative than a probabilistic predictor:
▶ Coarser, but easily interpretable, measure of uncertainty via set size

Conformal prediction aims at extracting well-calibrated set
predictors from probabilistic predictors.9
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Set Predictors from Probabilistic Predictors

If a probabilistic predictor is well calibrated, one can directly identify a
subset of output values that includes the true output with a desired
coverage probability 1 � ↵ (conditioned on input x).
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9V. Vovk, A. Gammerman, and G. Shafer, Algorithmic Learning in a Random World, Springer, 2005.
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Calibration of Set Predictors
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A set predictor is well calibrated if

P
(
true label ∈ predicted set

)
≥ 1− α

for some desired coverage probability 1− α.

Alternatively, we say it is (1− α)-valid.

Inefficiency of a set predictor is the average predicted set sizes.
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Set Predictors from Probabilistic Predictors
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1− α

Well-calibrated probabilistic predictor =⇒ well-calibrated set

When p(y |x , θ) ̸= p(y |x), this approach is invalid
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Validation-based Conformal Prediction (VB-CP)
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Nonconformity score:
▶ High when z = (x , y) conforms poorly to Dtr

▶ E.g., for classification, NC
(
(x , y)

∣∣Dtr
)
= − log p(y |x ,Dtr)

Split data set into training and validation
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Validation-based Conformal Prediction (VB-CP)
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Quantile analysis on the validation set

VB-CP10 is known to be (1− α)-valid

Assumption: test sample (x , y) and available data D are exchangeable

10V. Vovk, et al, “Algorithmic Learning in a Random World,” Springer 2005.
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K -cross-validation-based conformal prediction (K -CV-CP)

Split the data into K folds

For each of the folds k = 1, . . . ,K
▶ A model is trained using the leave-fold-out
▶ The fold is later used as a calibration set for that trained model

Combine together the K predictions via quantile analysis11

K -CV-CP is guaranteed to be ≈ (1− 2α)-valid under the same
exchangeability assumption

11R. F. Barber, et al, “Predictive inference with the jackknife+,” The Annals of Statistics, 2021.
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Experiments

Demodulation of 8-QAM constellation12 (|Y| = 8)

Channel
▶ Transmitter I/Q distortion
▶ Random phase channel
▶ AWGN

Target miscoverage rate is set to α = 0.1

12Z. Demeng, et al, “A Two-Stage Coded Modulation Scheme Based on the 8-QAM Signal for Optical Transmission
Systems,” Procedia Computer Science, 2018.
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Experiments
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Conclusions

Forming set predictors directly from probabilistic predictors do not
provide formal guarantees

VB-CP provides calibration guarantees
▶ (1− α)-valid, even for misspecified models

K -CV-CP better utilizes the available data, and is
▶ (1− 2α)-valid de jure
▶ (1− α)-valid de facto13,14

▶ More efficient, in the cost of training more models

Gain of CP is prominent in the few-data regime

13R. F. Barber, et al, “Predictive inference with the jackknife+,” The Annals of Statistics, 2021.
14Y. Romano, et al, “Classification with Valid and Adaptive Coverage,” NeurIPS, 2020.
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