

Weighted Sampling For Masked Language Modeling

Linhan Zhang¹ Qian Chen² Wen Wang² Chong Deng² Yuxin Jiang¹ Kongzhang Hao¹ Wei Wang³ Xin Cao³

¹University of New South Wales, School of Computer and Engineering ²Speech Lab of DAMO Academy, Alibaba Group, China ³Hong Kong University of Science and Technology (Guangzhou), China

Masked Language Model

Given a sentence $S = \{t_1, t_2, ..., t_n\}$

- Standard Masking Strategy
 - Randomly chooses 15% of tokens to mask
 - 10% of the time replaced by a random token from corpus
 - 10% of the time remains unchanged
 - 80% of the time replaced by a special token [MASK]
- Objective
 - The language model must learn to predict the masked tokens with bidirectional context
- Use Cases
 - Helps understand the contextual relationships between words
 - Can be used for various natural language processing tasks such as text classification, question answering, and named entity recognition

Motivation - Addressing the Frequency Bias Issue 達摩院

- Frequency Bias in the Standard Masking Strategy
 - High-frequency tokens are masked frequently
 - More informative tokens with lower frequencies are masked much less frequently during pre-training
 - This greatly harms the efficiency of pre-training

Fig. 1. An example from WikiText. Randomly selected tokens are in blue while Frequency Weighted Sampled tokens are in pink.

Proposed Method

Weighted Sampling: masking tokens based on (1) token frequency or (2) training loss

Fig. 2. Illustration of the proposed **Dynamic Weighted Sampling** for mask language modeling (MLM). The sampling weight of choosing a token to mask is computed based on the prediction loss of this token by the current PLM. We store the sampling weights of each token in the weight dictionary.

Weighted Sampling Strategy

- Method 1: Frequency Weighted Sampling
 - Step 1: Remove the influences of extremely rare tokens

$$\operatorname{freq}^{*}(w) = \begin{cases} \operatorname{freq}(w) &, \text{ if } \operatorname{freq}(w) > \theta \\ \theta &, \text{ otherwise.} \end{cases}$$
(1)

• Step 2: Compute Sample Weight *wt*(*w*) for *w*

$$wt(w) = (freq^*(w))^{-\alpha}$$
(2)

• Step 3: Compute Sample Probability $p(t_i)$ for token t_i in sentence S

$$p(t_i) = \frac{wt(t_i)}{\sum_{j=1}^n wt(t_j)}$$
(3)

Weighted Sampling Strategy

- Method 2: Dynamic Weighted Sampling
 - Step 1: Initialize Sampling Weight
 - $wt(t_i) = 1$ for each token $t_i \in T$ in the weight dictionary
 - *T* denotes all tokens in the pre-training dataset
 - Step 2: Compute Total Cross-Entropy Loss for token *t_i*

$$L_{t_i} = -logP(t_i \mid x, \theta) \tag{4}$$

- Step 3: Compute Sampling Weight *wt*(*t_i*)
 - Compute sampling weight for each token based on its prediction loss by the current pre-trained language model
 - Store these sampling weights in the weight dictionary

$$wt(t_i) = exp(\frac{L_{t_i}}{\tau}) \tag{5}$$

- Step 4: Compute Sampling Probability $p(t_i)$
 - Normalize $wt(t_i)$ to obtain the sampling probability for each token t_i

Experiments - Semantic Textual Similarity

- Objective: To evaluate unsupervised sentence representation on STS tasks
- Evaluation Metric: Spearman's correlation coefficient between the predicted similarity and the gold standard similarity scores

Baselines

- BERT: bert-base-uncased
- BERT-CP: continue pre-training on BERT with **random sampling** on the Wiki-Text

Proposed Method

- WSBERT_Freq: continue pre-training on BERT with Frequency Weighted Sampling on the Wiki-Text
- WSBERT_Dynamic: continue pre-training on BERT with Dynamic Weighted Sampling on the Wiki-Text

Experiments - Semantic Textual Similarity

Method	STS12	STS13	STS14	STS15	STS16	STS-B	SICK-R	Avg.
BERT	39.70	59.38	49.67	66.03	66.19	53.87	62.06	56.70
BERT-CP	41.00	60.02	51.11	68.43	64.59	56.32	62.07	57.65
WSBERT_Freq	42.60	61.32	52.04	69.84	66.61	59.89	61.94	59.18
WSBERT_Dynamic	47.80	67.28	57.13	71.41	68.87	65.28	64.90	63.24
BERT-Whitening	54.28	78.07	65.44	64.83	70.16	71.43	62.23	66.43
WSBERT-Whitening	55.14	78.45	<u>66.13</u>	65.47	70.68	71.98	61.91	67.10
BERT + Prompt†	60.96	73.83	62.18	71.54	68.68	70.60	67.16	67.85
WSBERT + Prompt	<u>63.03</u>	71.66	63.80	75.32	76.67	<u>74.79</u>	65.32	<u>70.08</u>

• Findings

- Weighted sampling methods, WSBERT_Freq and WSBERT_Dynamic, outperform the baselines (BERT and BERT-CP)
- For instance, WSBERT_Dynamic outperforms BERT and BERT-CP by 6.54 and 5.59 absolute points respectively
- WSBERT_Dynamic can be effectively combined with Whitening and Prompt to further improve performance

Experiments - GLUE Evaluation

 Purpose: to evaluate transfer learning capability

Findings

- WSBERT achieves the best average GLUE score compared to BERT and BERT-CP, outperforming BERT by 0.52 absolute
- BERT-CP degrades GLUE AVG by 0.35 absolute compared to BERT
- WSBERT outperforms BERT- CP by 0.87
 absolute
- The gain of WSBERT over BERT is from continual pre-training with Dynamic Weighted Sampling, not from continual pre-training

STS and GLUE evaluations demonstrate that Dynamic Weighted Sampling improves the transfer learning capability while enhancing sentence representations.

Dataset	BERT	BERT-CP	WSBERT
MNLI	$84.30_{\pm 0.26}$	$84.26_{\pm 0.19}$	$84.42_{\pm 0.35}$
QQP	$91.31_{\pm0.04}$	$90.94_{\pm 0.59}$	$91.43_{\pm 0.05}$
QNLI	$91.47_{\pm 0.01}$	$91.32_{\pm 0.17}$	$91.14_{\pm 0.17}$
SST-2	$92.86_{\pm 0.13}$	$92.78_{\pm 0.43}$	$91.35_{\pm 0.47}$
CoLa	$56.47_{\pm 0.65}$	$57.44_{\pm 0.95}$	$58.29_{\pm 0.33}$
STS-B	$89.68_{\pm 0.26}$	$89.52_{\pm 0.37}$	$89.86_{\pm 0.18}$
MRPC	$86.13_{\pm 1.63}$	$85.13_{\pm 0.53}$	$88.20_{\pm 2.39}$
RTE	$69.23_{\pm 0.4}$	$67.25_{\pm 1.84}$	$70.89_{\pm 0.17}$
AVG	$82.68_{\pm 0.33}$	$82.33_{\pm 0.32}$	$83.20_{\pm 0.10}$

Table 2. GLUE Validation results from *BERT-base-uncased* (BERT-base), *BERT-base-uncased* continually pre-trained (BERT-CP), and Weighted-Sampled BERT (WSBERT). BERT-CP and WSBERT both continually train on BERT with the same training settings. WS-BERT refers to WSBERT_Dynamic. The best results for each dataset and AVG are in bold.

Takeaway and Future work

- Proposed two Weighted Sampling methods to address the frequency bias issue in conventional masked language modeling
- Developed a new PLM, WSBERT, by applying Weighted Sampling to BERT
- WSBERT outperforms BERT in both sentence representation quality and transfer learning capability
- Future work includes investigating other dynamic sampling methods and exploring training objectives with a penalty for frequency bias