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Qubit vs Bit
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Quantum Gates
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 Quantum gate  ⇒ Matrix
 Single qubit gate ⇒ 2*2

 Two-qubit gate ⇒ 4*4

 Multi-qubit gate ⇒ n*n
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Variational Quantum Circuit

 Encoding layer 𝑺𝑺(𝒙𝒙)
 Prepare quantum state 𝜌𝜌𝑥𝑥 to represent the classical input data.

 Variational circuit block 𝑼𝑼(𝒙𝒙)
 Entangle  and rotate 𝜌𝜌𝑥𝑥 to generate the processed state �𝜌𝜌𝑥𝑥.

 Measuring layer
 Measure �𝜌𝜌𝑥𝑥 to generate classical output.
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Quantum Cloud Computing

 Users
 Design a QNN circuit. 
 Train the QNN circuit. 
 Compile the trained circuit and input 

data into quantum analog pulses.
 Send the pulse sequence to a cloud 

NISQ server.

 Cloud NISQ server
 Apply the pulse sequence to qubits.
 Return the result to the user. 

Circuits
Inputs
Configs

pulse results

NISQ 
servers



Indiana University Bloomington

Quantum Compiler

 Cloud NISQ server
 Different pulse durations.
 Maximum pulse amplitudes.
 Pulse channel numbers.
 Even the same server requires 

different values for pulse error 
calibration at different times. 

 Pulse
 An integer duration. 
 A complex amplitude. 
 The standard deviation
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Backdoor Attacks in Classical NNs

 QTrojan does not need to access the original dataset, use a long 
training process, or attach a trigger to input data. 

 QTrojan can still work even after the user retrains the victim QNN with 
their new clean datasets.

Schemes DPBA QTrojan

No Trigger in Inputs  

No Training Data  

No Training Process  

Works after Retraining  
Data-Poisoning-based 
Backdoor Attacks (DPBA)
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Threat Model

QNN Config 

User 

Server 

 Download configuration file to 
minimize noises and errors before 
each compilation.

 Benign configuration file.
 Normally operate

 Configuration file with a trigger.
 Classify all inputs into a predefined 

target class
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Angle Encoding.

 QTrojan does not need to access the original dataset, use a long 
training process, or attach a trigger to input data. 

 QTrojan can still work even after the user retrains the victim QNN with 
their new clean datasets.
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Backdoored Angle Encoding Layer
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 Pre-encoding layer �𝑺𝑺(𝒙𝒙)
 Move the qubit to a specific 

position, shielding the 
encoding layer.

 Encoding layer 𝑺𝑺(𝒙𝒙)
 Normally applied encoding 

layer.

 Post-encoding layer �𝑺𝑺(𝒙𝒙)
 Rotate the qubit by 𝜃𝜃

predefined by the attacker.

Angle encoding layer

Backdoored Angle encoding layer
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Pulse-level Overhead

 Two data encoding layers have different pulse amplitudes, but QTrojan has 
the same duration as 𝑺𝑺(𝒙𝒙).
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Experimental Setup
 Dataset & Circuit

 Software
 Qiskit,  Pytorch

 Hyperparameters
 QNN. Learning rate = 1e-3, weight  decay = 1e-4
 QLSTM. Learning rate = 1e-2

 Metrics
 Clean data accuracy (CDA)
 Attack success rate (ASR)

Task Pre-processing Input Size Qubit # Circuit
MNIST-2 (0,1) Down-sample 4*4 16 QNN
MNIST-4 (0-3) Down-sample 4*4 16 QNN
Sin Function N/A N/A 4 QLSTM
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DPBA vs QTrajon

 The QNN simply cannot learn both the MNSIT classification task and 
the backdoored task well simultaneously.

 QTrajon can achieve 100% ASR in both tasks

Schemes
QNN (%) DPBA QTrajon

Accuracy CDA ASR CDA ASR

MNIST-2 98.25 91.56 99.5 98.25 100

MNIST-4 58.6 43 68.75 58.6 100
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Partial QTrojan against QNN

 Only a pre-encoding layer on some qubits is powerful enough to abuse 
the victim 16-qubit QNN.

Schemes
ASR of QTrajon (%)

1 qubit 2 qubits 3 qubits 4 qubits

MNIST-2 100 100 100 100

MNIST-4 61.18 72.92 81.4 100

 We added �𝑺𝑺𝒙𝒙 (RX gates) on 1 ∼ 4 qubits of the victim QNN.
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QTrojan against QLSTM.

 QTrojan forces the prediction result of QLSTM to a horizontal line.
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Conclusion

 We propose a circuit-level backdoor attack, QTrojan, 
against quantum machine learning. 

 QTrojan can be implemented by few quantum gates 
attached to victim QNN circuits. 

 Compared to DPBA, QTrojan improves the CDA by21% 
and the ASR by 19.9% on average.
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