
IQGAN: ROBUST QUANTUM GENERATIVE ADVERSARIAL NETWORK
FOR IMAGE SYNTHESIS ON NISQ DEVICES

Cheng Chu Grant Skipper Martin Swany Fan Chen

Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, USA

ABSTRACT

In this work, we propose IQGAN, a quantum Generative Ad-
versarial Network (GAN) framework for multiqubit image
synthesis that can be efficiently implemented on Noisy In-
termediate Scale Quantum (NISQ) devices. We investigate
the reasons for the inferior generative performance of cur-
rent quantum GANs in our preliminary study and conclude
that an adjustable input encoder is the key to ensuring high-
quality data synthesis. We then propose the IQGAN archi-
tecture featuring a trainable multiqubit quantum encoder that
effectively embeds classical data into quantum states. Fur-
thermore, we propose a compact quantum generator that sig-
nificantly reduces the design cost and circuit depth on NISQ
devices. Experimental results on both IBM quantum proces-
sors and quantum simulators demonstrated that IQGAN out-
performs state-of-the-art quantum GANs in qualitative and
quantitative evaluation of the generated samples, model con-
vergence, and quantum computing cost.

Index Terms— Quantum machine learning, generative
adversarial networks, noisy intermediate-scale quantum

1. INTRODUCTION

Related Work and Motivation. The recent success of su-
pervised Quantum Neural Networks (QNNs) [1, 2, 3, 4] has
inspired several quantum Generative Adversarial Network
(GAN) frameworks [5, 6, 7, 8, 9] that extend the appli-
cation of QNNs to unsupervised generative learning. A
GAN [10, 11] consists of a generator (G) that generates
synthetic samples, and a discriminator (D) that tries to dis-
tinguish between true and fake data. Such an adversarial
game converges to the point where G generates the same
statistics as the true data and D is unable to discriminate
between the true and generated data. Lloyd et al. [6] theo-
retically proved that quantum GANs exhibit potential expo-
nential advantages over classical GANs in high-dimensional
data synthesis. QuGAN18 [7] presented an implementation
of quantum GAN, which suffers from convergence issues.
QuGAN21 [8] and EQ-GAN [9] showed that a quantum
fidelity based loss function stabilizes the training process,
but both works generate data with low quality and require
high implementation cost. In this work, we are motivated

THIS WORK WAS SUPPORTED IN PART BY NSF CAREER
AWARD CNS-2143120.

Table 1. Comparisons between IQGAN and previous works
(Conv: Convergence; MultiQ: multiple-qubit output).

Scheme Loss Conv MultiQ Quality Cost
QGAN [6] N/A N/A N/A N/A N/A
QuGAN18 [7] Trace ✘ ✘ Med. High
QuGAN21 [8] Fidelity ✔ ✔ Low High
EQ-GAN [9] Fidelity ✔ ✘ Low Med.
IQGAN Fidelity ✔ ✔ High Low

to advance previous work [8, 9] by proposing IQGAN, a
robust multiqubit Quantum Generative Adversarial Network
architecture for Image synthesis that can be efficiently imple-
mented on today’s noisy intermediate-scale quantum (NISQ)
devices. We summarize the comparisons between IQGAN
and state-of-the-art (SOTA) quantum GANs in Table 1.

Our Contributions. This work makes the following con-
tributions. (1) We study the reasons for the low generative
performance in previous work [8, 9] and conclude that the
standard quantum encoders limit the generative ability of a
quantum GAN. We then propose a trainable multiqubit quan-
tum encoder that achieves SOTA quality on the generated
data (Section 3.1); (2) We present a compact generator circuit
ansatz that reduces hardware cost and circuit depth compared
with previous work [8, 9] (Section 3.2); (3) We demonstrate
that IQGAN can be efficiently implemented on NISQ devices
and provide the training procedure (Section 3.3); (4) We eval-
uate IQGAN on both IBM quantum processors and simulators
and show that IQGAN outperforms the prior arts in qualitative
and quantitative evaluations of the generated samples, model
convergence, and quantum computing cost (Section 4).

Limitations and Scope. The potential exponential ad-
vantage of quantum GANs over classical GANs is proved
in [6]. In this work, we focus on the situation where the data
is classical while the generator and discriminator are quan-
tum, same as [8]. We implement a small-scale IQGAN and
evaluate its performance against prior arts on MNIST dataset
– a small dataset considered by classical machine learning but
SOTA dataset on QNN evaluation [8, 12, 13, 14]. The limi-
tations on the scale of the implementation and the dataset are
due to the NISQ technology capabilities. The implementa-
tion scale of IQGAN and its corresponding generative perfor-
mance will improve with the rapidly improving technology.
IQGAN demonstrates how NISQ computers can be used to
perform nontrivial generative learning tasks with a reasonable
performance by overcoming the current quantum obstacles.IC
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2. BACKGROUND AND PRELIMINARY ANALYSIS

2.1. Quantum GANs Background
Figure 1 shows the mainstream quantum GAN (QGAN) ar-
chitecture [8, 9], which consists of (1) a data encoder S(x) that
embeds a real classical input x to a quantum state |ψσ⟩; (2)
a Variational Quantum Circuit (VQC) based generator G(θg)
that generates synthetic data represented as a quantum state
|ψρ(θg)⟩; and (3) a SWAP test based discriminator D(|ψσ⟩,
|ψρ⟩) that measures the fidelity between the real data |ψσ⟩
and the fake data |ψρ⟩. Due to the limited number of qubits in
NISQ devices, high-dimensional inputs are down-sampled us-
ing Principal Component Analysis (PCA) [8], while the gen-
erated data is obtained by first measuring the qubits of the
generator, i.e., q3, q4 in Figure 1, on the probability of the |0⟩
state, and then transforming the measured vector into a high-
dimensional data using inverse PCA. Note that we consider
two-qubit inputs and a G(θg) with a single circuit block as an
example. The input size and number of blocks in G(θg) can
be adjusted to fit the problem of interest.

Classical-to-Quantum Encoder, S(x). Angle encoding
is the most widely used method in QNNs [8, 13, 14, 15] due to
its noise immunity and simplicity of implementation. Angle
encoding encodes anN -dimensional data as the radians of ro-
tation gates acting onN qubits, i.e., |ψx⟩ =

⊗N−1
i=0 R(xi)|0⟩,

where R can be one of or a combination of the rotate gates
{RX, RY, RZ} and ⊗ represent the tensor product operation.

VQC Circuit Ansatz, G(θg). Mainstream QNNs [13, 16,
17] adopt a VQC ansatz constructed by parameterized single-
qubit rotation gates followed by nearest-neighbor coupling of
qubits using fixed two-qubit CNOT gates, as illustrated in Fig-
ure 1. Such a circuit ansatz has demonstrated superior expres-
sive capability in various applications. The logic behind such
designs is that single-qubit rotations provide a way to param-
eterize circuits, while two-qubit CNOT gates provide maximal
entanglement between the two target qubits.

SWAP Test Circuit, D(|ψσ⟩, |ψρ⟩). A SWAP test circuit
is a standard quantum module used for quantum fidelity mea-
surement. As shown in Figure 1, it consists of one ancillary
qubit q0, two Hadamard gates (i.e., H gate), and several con-
trolled SWAP gates (i.e., CSWAP gate) that interchange the two
quantum states under test only if q0 is in state |1⟩. The ancil-
lary qubit q0 is finally measured on the z-basis and the proba-
bility it yields a measured output |0⟩ is P0 =

1+⟨ψσ|ψρ⟩2
2 . P0

is defined as quantum fidelity as it provides a good estimate
of how close two states are, i.e., P0 = 1

2 for two orthogonal
states and P0 = 1 for two exactly same states.

Training Objective. The parameter matrix θg can be
equivalently viewed as the weights in classical neural net-
works and is trained iteratively to minimize a fidelity based
loss shown in Equation 1.

min
θg

L(θg) = min
θg

[1− ⟨ψσ|ψρ(θg)⟩2] (1)
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Fig. 1. A standard QGAN (shaded gates are trainable).

2.2. Preliminary Analysis
Low-quality Generated Images. Although prior work [8, 9]
achieved training convergence with the fidelity based loss,
their generated data is of low quality. We show the fidelity
between the learned quantum state |ψρ⟩ and the target quan-
tum state |ψσ⟩ using angle encoding in Equation 2∼3. For
the sake of simplicity, we highlight a special case of Equa-
tion 3 in Equation 4 by adding 2nπ to the learned angle θρ.
It is clear that the same fidelity and hence the same loss can
be achieved with different parameter sets due to the periodic
repeatability of the sine and cosine functions, resulting
in distorted generated images (See Figure 2). Although input
data can be mapped to the range [0,π] before applying the an-
gle encoding [8, 16], such unfaithful normalization prevents
a QNN from learning an accurate model and producing high-
quality output. We conclude that the de facto angle encoding
(even with normalization) fails to ensure high-quality output
in a fidelity based GAN framework. We investigate if a new
quantum encoding method with learnability can improve per-
formance for a quantum GAN.

⟨ψρ|ψσ⟩2 = (
[
cos

θρ
2

sin
θρ
2

] [cos θσ
2

sin θσ
2

]
)2 (2)

= (cos
θρ

2
cos

θσ

2
+ sin

θρ

2
sin

θσ

2
)2 (3)

= (cos
θρ + 2nπ

2
cos

θσ

2
+ sin

θρ + 2nπ

2
sin

θσ

2
)2 (4)

Complex and High-Cost Generator. The standard cir-
cuit ansatz for generator shown in Figure 1 requires each pair
of nearest-neighbors to be maximally entangled using expen-
sive two-qubit CNOT gates. We hypothesize that (1) a flex-
ible amount of entanglement rather than fixed maximal en-
tanglement may perform better for a QNN algorithm; (2) a
generator without entanglement gates may be good enough to
provide acceptable generative capability since the encoding
circuit S(x) normally embeds target data without any entan-
glement gates. Therefore, we proposed to explore the replace-
ment of fixed CNOT gates with other two-qubit gates (e.g.,
fixed or parameterized), or even completely remove two-qubit
gates in a generator circuit. We investigate the effect of two-
qubit gates on the performance of a generative ansatz and set
out to reduce the circuit complexity of a generator.
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Table 2. Comparison on quantum GANs with different two-qubit gate (2QGate).
2QGate Block # Normalized Cost Fidelity θ0 θ1 θ2 θ3 θ4 θ5 θ6 θ7

CNOT 2 2.8× 0.813 N/A
ISWAP 2 3.7× 0.954 N/A

CRX(θ) 2 6× 0.969
-0.007
0.003

-0.023
0.036

-0.228
1.799

0.034
0.018

-0.093
-0.118

-0.154
0.013

-0.015
0.033

3.348
3.167

CROT(ϕ, θ, ω) 2 6× 0.969
0.911
0.079

-0.057
-0.086

2.049
-0.068

0.059
-0.971

-1.883
-0.043

0.013
0.098

2.827
0.262

0.090
-0.062

w/o 2QGate N/A 1× 0.969 N/A

3. IQGAN: DESIGN AND IMPLEMENTATION
In this section, we present the design and implementation
of the proposed IQGAN framework. The IQGAN architec-
ture has two innovative components: (1) a variational encoder
S(arcsin(x · θs)) that adaptively embeds classical training
data into quantum states; and (2) a compact quantum gen-
erator G(θg) without costful two-qubit entanglement gates.

3.1. Trainable Multiqubit Quantum Encoder
Instead of using a fixed encoder (FE) circuit S(x), we investi-
gate trainable encoder (TE) using PennyLane [18] and show
that a properly designed variational classical-to-quantum en-
coder results in improved performance for a QNN model (See
results in Section 4). We introduce adaptivity into the encoder
circuit by defining a variational encoder function S(arcsin(x·
θs)) with trainable parameters θs. To obtain an angle en-
coding, we utilize the arcsin function, which is common
practice in QNN encoding [16]. The parameter set θs is pre-
trained to produce faithful quantum presentations in which
data from different clusters are separated. Specifically, the en-
coder is trained with a pre-train dataset (CIFAR10 [19] in this
work) T ={(xi, yi)|0≤i≤N -1}, where xi is an n-dimensional
vector and yi is the label. We prepare a quantum ensemble
σyk

= 1
Nk

∑j=Nk−1
j=0 |ψσ(xj)⟩⟨ψσ(xj)| by uniformly sampling

Nk inputs from class yk, i.e., Tk={(xj, yk)|0≤j≤Nk-1}, and
feeding them into the encoder. We then train the encoder to
obtain a set of optimal parameters θ∗s that maximize the dis-
tance between σyk

and σym when k ̸=m. IQGAN uses the
pre-trained values of S(arcsin(x · θ∗s )) as the initial parame-
ters of the encoder.

3.2. Compact Quantum Generator
To investigate the impact of two-qubit entanglement gates
on the performance of a generator circuit ansatz, we replace
the default CNOT gates in Figure 1 with widely used two-
qubit gates, including fixed ISWAP gates, and parameterized
CRX(θ) and CROT(ϕ, θ, ω) gates. We refer interested read-
ers to [20] for detailed explanations of each candidate gate.
We provide a full comparison between different generator cir-
cuit ansatzes in Table 2. The default CNOT gates do not per-
form very well and actually perform worse than other types
of two-qubit entanglement gates. Parameterized gates, i.e.,
CRX and CROT, perform better than fixed ISWAP gates (i.e.,
0.954 vs. 0.969), which is attributed to the trainable amount

Table 3. Hardware cost of different quantum GAN schemes
(n: input size; b: repeated VQC block number; 1QG#/2QG#:
one-/two-qubit gates number; Param.#: parameter number).

Scheme Qubit# 1QG# 2QG# Param.#
QuGAN21 [8] 2n+1 nb+1 4nb 5nb

EQ-GAN [9] 2n+1 2nb+n+2 (b+ 1)n 2nb

IQGAN 2n+1 2nb+n+2 n 2nb

of entanglement. However, the hardware overhead of CRX
and CROT gates is significantly higher than fixed two-qubit
gates. In particular, we find that a generator without two-
qubit gates, denoted as w/o 2QGate in Table 2 achieves the
same performance as CRX and CROT with 6× reduced hard-
ware cost. Therefore, we propose to implement the generator
in IQGAN with no two-qubit gates.

3.3. Implementation of IQGAN
Hardware Implementation Cost. Multiqubit gates are de-
composed in practice into basic single-qubit and two-qubit
gates supported by specific gate libraries. We assume an ideal
quantum circuit library that supports all types of single-qubit
and two-qubit gates and provide a quantitative comparison of
design cost between IQGAN and prior arts in Table 3. IQ-
GAN requires the minimum hardware resource and reduces
hardware cost by at least 6× in the simplest case when the
generator uses only one VQC block, as detailed in Table 2.

Training Procedure. IQGAN requires a two-step train-
ing process. At the beginning of the algorithm, the encoder
S(arcsin(x · θs)) is initialized by arbitrary parameters θ0s and
trained on a pre-train dataset to obtain the optimized param-
eter set of θ∗s as explained in Section 3.1. We then utilize
S(arcsin(x · θ∗s )) in an IQGAN framework with uniformly
initialized θ0g , and train the whole model to minimize the ob-
jective function in Equation 1. After the model reaches its
convergence, we record the optimal parameter set of θ∗g .

4. EXPERIMENTS AND RESULTS
4.1. Experimental Setup
Schemes and Benchmarks. We compare IQGAN with two
SOTA quantum GANs [8, 9] using the MNIST [21] dataset.
Note that we exclude QuGAN2018 [7] because it suffers from
convergence oscillation and is difficult to train in practice [9].
We demonstrate the proof-of-principle of IQGAN using a 5-
qubit IBM quantum processor, ibmq quito [22]. We con-
firm that IQGAN is reasonably accurate in generating syn-
thetic images on real NISQ devices.
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Fig. 2. MNIST images generated by QuGAN2021 [8] (1st row), EQ-GAN [9] (2nd row), and IQGAN (bottom row).
Table 4. Accuracy comparison of Fixed Encoder (FE) and
Trainable Encoder (TE) on different subsets of MNIST.

Task Input Qubit # Accuracy (%)
Size FE TE

MNIST-2 4*4 16 89.5 90.9
MNIST-4 2*2 4 43.2 45.6
MNIST-4 4*4 16 45.9 49.4
MNIST-8 4*4 16 23.25 24.3

Simulation. All quantum GANs are implemented us-
ing PennyLane [18], a quantum computing software library.
We train QuGAN2021 [8] using their open-source code by
following their training configuration. We implement EQ-
GAN [9] by following their design strategy but extending
their original design to support multiqubit data. EQ-GAN [9]
and IQGAN are trained with the ADAM optimizer, while the
learning rate, batch size, and the number of epochs are set re-
spectively as 0.001, 32, and 30. The learning rate is scheduled
by CosineAnnealingLR with a Tmax of 30.
4.2. Results and Analysis
Effectiveness of the Trainable Encoder. To compare the
faithful data embedding capability between the de facto fixed
encoder (FE) and the proposed trainable encoder (TE), we ap-
ply both FE and TE to downstream classification tasks and re-
port their accuracy in Table 4. TE boosts the model accuracy
under different input sizes. We also make two observations
that can be extended for general quantum machine learning
algorithm: (1) The effectiveness of TE increases as the in-
put qubit size increases, e.g., the accuracy improvement com-
parison on MNIST-4 for input sizes of 2 × 2 and 4 × 4; (2)
The effectiveness of TE increases with the model complexity,
e.g., the accuracy improvement comparison between MNIST-
2 and MNIST-4 with both 16-qubit inputs.

Comparison on Image Quality. As visualized in Fig-
ure 2, QuGAN2021 [8] shows limited generative capability.
For images of 0 and 9, a blurred outline can be identified.
However, for images of 3 with more complex visual struc-
tures, QuGAN2021 [8] fails to reproduce the images. The
results of EQ-GAN [9] demonstrate an unstable image qual-
ity with a large deviation. For instance, the 4th, 5th, 8th,
13th, 17th, and 18th images are highly distorted. Note
that the results for QuGAN2021 [8] and EQ-GAN [9] are
simulated data, while the results on IQGAN are collected
on ibmq quito [22]. Compared with previous quantum
GANs, we see IQGAN achieves a stable and consistent high-
quality output even on NISQ devices.

Convergence of IQGAN. In Figure 3, we present the
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Fig. 4. Impact of noises.
measured fidelity of the discriminator in IQGAN. We re-
ported results with both fixed encoder (FE) and trainable
encoder (TE). A stable convergence within ten iterations can
be observed for both configurations, confirming that IQGAN
converges to a high (i.e., >0.92) state overlap with the tar-
get inputs. Compared with a standard FE, the proposed TE
achieved a lower (e.g., 0.85 vs. 0.90) fidelity in the first
several iterations, however, the final learned fidelity of TE
is ∼0.039 higher (i.e., 0.966 vs. 0.927) than FE. Further-
more, the learned fidelity of TE increases faster than that of
FE, which is mainly attributed to the higher flexibility and
adaptability of the TE circuit and the richer expressive power.

Impact of Quantum Errors. We also explore the impact
of quantum errors on IQGAN performance. We consider bit-
flip and phase-flip [23, 24], which are the two most significant
error types on NISQ devices. We down-sample the original
images to 1×2, 1×4, 1×6, and 1×8 vectors using PCA algo-
rithm, and report the fidelity of generated images in Figure 4.
Although the quality of the target images increases monoton-
ically with the input size, the fidelity between learned images
and original inputs decreases. This phenomenon is counterin-
tuitive but can be explained in quantum GAN when quantum
errors are considered. First, the increased input sizes require
an increased number of qubits. Second, as the dimension of
the data increases, the required generative capability of the
generator also increases. Therefore, a more deep generator
circuit with an increased number of blocks is required to fit
the data. A quantum system with more qubits and gates is
more susceptible to noise. In this case, while a more complex
IQGAN circuit increases the expressive power of the model,
quantum noise from excessive overhead reduces the overall
fidelity.

5. CONCLUSION
We propose IQGAN, a quantum generative adversarial net-
work for image synthesis that can be implemented on NISQ
devices. We compared IQGAN with previous work and
demonstrate that IQGAN outperforms the state-of-the-arts in
image quality and quantum hardware implementation cost.
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