IQGAN: Robust Quantum Generative Adversarial Network for Image Synthesis On NISQ Devices

Cheng Chu Grant Skipper Martin Swany Fan Chen

Dept. of Intelligent Systems Engineering, Indiana University Bloomington

Qubit vs Bit

Classical Bit: 0 1 Quantum Bit: 0 1

Quantum Bit (Qubit):

•
$$|\psi\rangle = \cos\frac{\theta}{2}|0\rangle + e^{i\varphi}\sin\frac{\theta}{2}|1\rangle$$

•
$$|\psi\rangle = \begin{bmatrix} \cos\frac{\theta}{2} \\ e^{i\varphi}\sin\frac{\theta}{2} \end{bmatrix}$$

Quantum Gates

- Quantum gate \Rightarrow Matrix
 - Single qubit gate $\Rightarrow 2^{*}2$
 - Two-qubit gate $\Rightarrow 4*4$
 - Multi-qubit gate \Rightarrow n*n

- Quantum gate operation
 - Matrix Multiplication

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \times \begin{bmatrix} b_0 \\ b_1 \end{bmatrix} = \begin{bmatrix} b'_0 \\ b'_1 \end{bmatrix}$$

Quantum GANs framework

- Data encoder S(x)
 - Embed a classical input x to a quantum state $|\psi_{\sigma}\rangle$.
- Generator $G(\theta_g)$
 - Generate synthetic data $|\psi_{\sigma}(\theta_g)\rangle$.
- Discriminator $D(\psi_{\sigma}, \psi_{\rho})$
 - Measure the fidelity between the real data $|\psi_{\sigma}\rangle$ and the fake data $|\psi_{\rho}\rangle$.
- Training Objective
 - $\min_{\theta_g} L(\theta_g) = \min_{\theta_g} [1 \langle \psi_\sigma | \psi_\rho(\theta_g) \rangle^2]$

Data encoder S(x)

- Encoding Methods
 - Angle encoding
 - Amplitude encoding
 - ...
- Angle Encoding
 - Simple implementation.
 - Noise immunity.
- Angle Encoding formulation
 - $|\psi_X\rangle = \bigotimes_{i=0}^{N-1} R(x_i)|0\rangle$
 - $R \in \{RX, RY, RX\}$

Generator $G(\theta_g)$

- VQC Circuit Ansatz
 - Parameterized single-qubit gates
 - Two-qubit CNOT gates
- Parameterized single-qubit gates
 - RX, RY, RZ, H, U1, Rot, ...
- Two-qubit CNOT gates
 - Provide maximal entanglement between the two target qubits.

Discriminator $D(\psi_{\sigma}, \psi_{\rho})$

- SWAP Test Circuit
 - One ancillary qubit q_0
 - Two Hadamard gates (H gate)
 - Several controlled SWAP gates
- Quantum fidelity measurement
 - Measure the ancillary qubit q_0 .
 - Get fidelity P₀. (The probability it yields a measured output |0))

$$P_0 = \frac{1 + \left\langle \psi_\sigma \middle| \psi_\rho \right\rangle^2}{2}$$

Quantum GANs Comparison

Scheme	Loss	Conv	MultiQ	Quality	Cost
QGAN [6]	N/A	N/A	N/A	N/A	N/A
QuGAN18 [7]	Trace	\checkmark	×	Med.	High
QuGAN21 [8]	Fidelity	\checkmark	\checkmark	Low	High
EQ-GAN [9]	Fidelity	\checkmark	×	Low	Med.
IQGAN	Fidelity	\checkmark	\checkmark	High	Low

[6] Seth Lloyd_Phys. Rev. Lett' 2018, [7] Pierre-Luc_Phys.Rev. A' 2018,

[8] Samuel A._QCE' 2021, [9] Murphy Yuezhen Niu_arXiv' 2021

Preliminary Analysis

Low-quality Generated Images

 The de facto angle encoding (even with normalization) fails to ensure highquality output in a fidelity-based GAN framework.

•
$$\langle \psi_{\rho} | \psi_{\sigma} \rangle^{2} = \left(\left[\cos \frac{\theta_{\rho}}{2}, \ \sin \frac{\theta_{\rho}}{2} \right] \left[\cos \frac{\theta_{\sigma}}{2} \\ \sin \frac{\theta_{\sigma}}{2} \right] \right)^{2} = \left(\cos \frac{\theta_{\rho}}{2} \cos \frac{\theta_{\sigma}}{2} + \sin \frac{\theta_{\rho}}{2} \sin \frac{\theta_{\sigma}}{2} \right)^{2}$$

$$= \left(\cos \frac{\theta_{\rho} + 2n\pi}{2} \cos \frac{\theta_{\sigma} + 2n\pi}{2} + \sin \frac{\theta_{\rho} + 2n\pi}{2} \sin \frac{\theta_{\sigma} + 2n\pi}{2} \right)^{2}$$
$$\Rightarrow \theta_{\rho} + 2n\pi = \theta_{\rho}, \ \theta_{\sigma} + 2n\pi = \theta_{\sigma}$$

- Complex and High-Cost Generator
 - Investigate the effect of two-qubit gates on the performance of a generative ansatz and set out to reduce the circuit complexity of a generator.

Trainable Multiqubit Quantum Encoder

- Variational encoder function
 - $S(\arcsin(x * \theta_s))$
- Pre-trained param θ_s .
 - Pre-trained data set. $\mathcal{T} = \{(x_i, y_i) | 0 \le i \le N - 1\}$
 - Prepare quantum ensemble. $\sigma_{y_k} = \frac{1}{N_k} \sum_{j=0}^{j=N_k-1} |\psi_{\sigma}(x_j)\rangle \langle \psi_{\sigma}(x_j)|$
 - Train the θ_s to maximize distance between σ_{y_k} and σ_{y_m} , when $k \neq m$.

Tack	Input	Qubit	Accuracy (%)			
Idsk	Size	#	FE	TE		
MNIST-2	4*4	16	89.5	90.9		
MNIST-4	2*2	4	43.2	45.6		
MNIST-4	4*4	16	45.9	49.4		
MNIST-8	4*4	16	23.25	24.3		

Fixed Encoder (FE), Trainable Encoder (TE)

Compact Quantum Generator

2QGate	Block #	Nor. Cost	Fidelity	$\boldsymbol{ heta}_{0}$	$ heta_1$	θ_2	$ heta_3$	$oldsymbol{ heta}_4$	$oldsymbol{ heta}_5$	$ heta_6$	$oldsymbol{ heta}_7$
CNOT	2	2.8×	0.813	N/A							
ISWAP	2	3.7×	0.954	N/A							
CRX(θ) 2	GX	0.000	-0.007	-0.023	-0.228	0.034	-0.093	-0.154	-0.015	3.348	
	2	2 0×	0.969	0.003	0.036	1.799	0.018	-0.118	0.013	0.033	3.167
$\begin{array}{c} CROT \\ (\phi, \theta, \omega) \end{array} 2 \qquad 6 \times \end{array}$	GX	0.000	0.911	-0.057	2.049	0.059	-1.883	0.013	2.827	0.09	
	2	UX	0.909	0.079	-0.086	-0.068	-0.971	-0.043	0.098	0.262	-0.062
w/o	N/A	1×	0.969	N/A							

 The generator w/o 2QGate in the table performs the same as CRX and CROT with 6× reduced hardware cost.

Experimental setup

Schemes and Benchmarks

Scheme	Qubit#	1QG#	2QG#	Param.#
QuGAN21 [8]	2n+1	nb+1	4nb	5nb
EQ-GAN [9]	2n+1	2nb+n+2	(b+1)n	2nb
IQGAN	Fidelity	2nb+n+2	n	2nb

• Software support.

- PennyLane, Pytorch
- Hyperparameters
 - Learning rate = 0.001
 - Batch size = 32
 - Epoch = 30
 - Learning rate scheduler. CosineAnnealingLR with a T_{max} of 30

[8] Samuel A._QCE' 2021, [9] Murphy Yuezhen Niu_arXiv' 2021

Comparison of Image Quality

 Compared with previous quantum GANs, IQGAN achieves a stable and consistently high-quality output.

Convergence of IQGAN

Impact of Quantum Errors

- Input size (\uparrow) → Data dimension (\uparrow) → Required generative capability (\uparrow)
- Input size (\uparrow) → Qubit number (\uparrow) → Noise impact (\uparrow)

Conclusions

- We study the reasons for the low generative performance in previous work and conclude that the standard quantum encoders limit the generative ability of a quantum GAN.
- We propose a trainable multiqubit quantum encoder that achieves SOTA quality on the generated data.
- We present a compact generator circuit ansatz that reduces hardware cost and circuit depth compared with previous work.
- We demonstrate that IQGAN can be efficiently implemented on NISQ devices and provide the training procedure.