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ABSTRACT
In the last couple of years, supervised machine learning (ML) meth-
ods have shown state-of-the-art results for near-ground rain estima-
tion. Information is usually obtained from two kinds of sensors - rain
gauges, which measure rain rate, and commercial microwave links
(CMLs) which measure attenuation. These data sources are paired
to create a dataset on which a model is trained. The arising problem
of such methods of training is in the need for the datasets to be con-
structed with a CML-rain gauge pairing relation. In this paper, we
propose a novel approach for rain estimation using a training method
that does not require a matching between a CML and a rain gauge.
Our goal is to infer the relation between CML measurements to rain
rate values, with a data-driven approach using an unpaired dataset.
We achieve this by inducing two cycle-consistency losses that cap-
ture the intuition that if we translate from attenuation measurements
to rain rate observations and back again - we should arrive at where
we started. Moreover, we learn two mapping functions translating
between A (attenuation) and R (rain-rate), denoted by G : A → R
and F : R → A. No information is provided as to which sample
in A matches which sample in R. We demonstrate our results us-
ing estimated accumulated rain predictions and validate them with a
nearby rain gauge station.

Index Terms— Commercial Microwave Links (CMLs), Rain
Estimation, Generative Adversarial Networks, Cycle consistency

1 Introduction
Commercial microwave links (CMLs) offer a unique opportu-

nity for the signal-processing community. Inferred signals provide
an insightful view of the propagation of waves in the atmosphere.
Depending on the widely distributed CMLs, it can provide alterna-
tive precipitation information with high spatial and temporal reso-
lution as a complement to dedicated precipitation products. More
than a decade ago, Messer et al. introduced the novel use of the
Power-Law for retrieving the rain estimates from CML measure-
ments using traditional signal processing methods [1]. Since then
there has been a growing body of research on the subject (see [2–4]
among many others). The main idea is based on the fact that by
knowing the power-law relation between rain-induced attenuation
and rain rate [5], the average rain rate throughout the CML path can
be retrieved [6–10].

Recently, machine learning (ML) and specifically deep learn-
ing (DL) has shown state-of-the-art results in several precipitations-
attenuation relations with methods such as support vector machine
[11], convolutional neural networks [12] and long-short term mem-
ory neural networks [13, 14] along other methods [15, 16]. All have
been applied for identifying and estimating precipitation with con-
siderable accuracy. However, implementing ML models require ade-
quate labeled data, and one of the significant limitations is the neces-
sity of paired datasets, meaning that each CML should have a nearby
rain gauge. If the matching is not explicitly specified, we call that an
unpaired dataset.

In this work, we suggest a new training method for rain estima-
tion using unpaired cyclic consistency [17]. This means that a model
is trained to translate a source domain to a target domain in the ab-
sence of paired examples. We apply cyclic consistency to translate
attenuation measurements to rain rate observations using unpaired
measurements of CMLs attenuation and rain gauge observations.
However, the rain-rate distribution is imbalanced [18], and we ad-
dress this imbalance by modifying the cyclic consistency. Using this
new approach, we train a rain estimation model using an unpaired
dataset of CMLs attenuation measurements and rain gauge observa-
tions from the same region (an area of approximately 30 km2). We
perform an experiment using data from the Netherlands and present
preliminary results of the suggested approach.

The contribution of this work includes1: i) We suggest a modi-
fied consistency loss which considers the imbalance distribution of
rain rate; ii) We propose a new training method for rain estimation
models with an unpaired dataset of CMLs attenuation measurements
and rain gauge observations via cycle constancy; and iii) We demon-
strate our method on data from the Netherlands and show competi-
tive results with unpaired training methods.

The rest of this paper is organized as follows: In Section 2, we
provide full details on the data set used in this study. In Section 3, we
describe the training method and network architecture of the model.
Section 4 describes the experiment’s results and implications. Lastly,
in Section 5, we discuss the limitations of the study and present our
conclusions.

2 Data
In this work, we use a dataset that contains 29 CMLs and three

rain gauges in the Netherlands. Figure 1 depicts a geographic region
where a selected group of CMLs and rain gauges are situated. The
rain rate dataset (i.e., the rain gauge observations) was provided by
KNMI [19], whereas, for the attenuation measurements, we used the
dataset detailed in [20].

Let xlong
T and xlat

T be the transmitting longitude and latitude
coordinates, respectively, and xlong

R and xlat
R are the receiving lon-

gitude and latitude coordinates, respectively. Then, the metadata of
jth CML is given by:

x(j) = [xlong
T , xlat

T , xlong
R , xlat

R ]. (1)

The CMLs-based dataset consists of minimum and maximum
received signal level (RSL) measurements collected by the CMLs
hardware (one minimum and one maximum RSL values within 15-
minute interval are reported for every such interval).2 The rain rate
observation were sampled every 15 minutes by rain gauges. All

1The code used in this paper is publicly available at: https://
github.com/sagitiminsky/CDEM

2The minimum and maximum values of the transmitted signal level (TSL)
were also collected, but assumed constant so were not included in the follow-
ing.



Fig. 1: Location of real CMLs [red], real rain gauges [blue], and
inferring rain gauges [green] in the Netherlands during the training
phase. We visualize inferring rain gauges only on the validation set.
Notice that rain gauges 1-6 are in the radius of 1 km from a real rain
gauge, which will serve as ground truth for the validation phase.

CMLs are in the same region as the rain gauges and all CMLs oper-
ate at the frequency range of 30 GHz - 45 GHz. In this work, we use
n successive measurements as the input of our models.

The CML RSL measurements were pre-processed in a method
inspired by the dynamic baseline evaluation process suggested in
[21], to remove any long-term attenuation causing effects (such as
free air propagation, and slow changing atmospheric phenomena as
air pressure and humidity changes). Specifically, we calculated the
minimal value inside a window size of 15 samples3 around each of
the received signal level (RSL) time series sampled, and subtracted
these minimal values from the corresponding minimum and maxi-
mum RSL time-series values as follows:

MRSLi = MRSLi −min(MRSLi−7, ...,MRSLi+7) (2a)

mRSLi = mRSLi −min(mRSLi−7, ...mRSLi+7) (2b)

where MRSLi and mRSLi are the maximum and minimum
RSL time-series values at time index i. Since the RSL measurements
correspond to the attenuation values (up to a the constant TSL val-
ues), we used them directly to define the attenuation measurements
matrix X

(j)
i ∈ R2×n of the jth CML and ith time sample, which is

a sequence of n consecutive measurements taken every 15 minutes:

X
(j)
i =

[
MRSLi, ...,MRSL(i+n)

mRSLi, ...,mRSL(i+n)

]
, (3)

where MRSLi and mRSLi are the maximum and minimum RSL
series after the removal of the other-than-rain attenuation factors.
We normalize the attenuation measurements sequence to be in range
between -1 and 1. The normalization is performed as follows:
X

(j)
i −xmin

xmax−xmin
where xmin = min

i′,j′
x
(j′)
i′ and xmax = max

i′,j′
x
(j′)
i′ are

3The windows size of 15 samples used here is relatively long and was
used to remove any other-than-rain constant or slow-changing attenuation-
related phenomena.

the minimal and maximal values which are calculated over all sam-
ples for all CMLs. We refer to this as the attenuation measurement
sequence.
Next, we describe the rain rate which is measured via rain gauges.
Specifically, the kth rain rate time series of the measurements sam-
pled every 15 minutes:

y
(k)
i =

[
RRi, ..., RR(i+n)

]
, (4)

where RRi to RR(i+n) are n measurement of rain rate. We apply
the same normalization technique as we did for CMLs but with rain
rate data. We normalize the rain rate sequence to be in the range

between -1 and 1. Similarly: y
(k)
i −ymin

ymax−ymin
where ymin = min

i′,k′
y
(k′)
i′

and ymax = max
i′,k′

y
(k′)
i′ are the minimal and maximal values which

are calculated over all samples of all rain gauges. We refer to this as
the rain rate observation sequence.

The rain-rate distribution is a well-studied subject [18,22] and it
is shown that low rain rate have a higher probability. This poses
a challenge to ML algorithms [23] since it produces imbalanced
datasets. During the experiment time in the Netherlands, 95% of
the time was dry whereas only in 5% of the time rain was observed,
which illustrates the imbalance problem. We address this problem
by adding a regularization which is presented in Section 3.1.

3 Method
In this section, we present our approach of regional training

of rain estimation model using CycleGAN [17]. During training,
we randomly select an unpaired sample of attenuation observation
X

(j)
i ∈ A and rain rate y

(j)
i ∈ R from the same region where A is

the attenuation domain and R is the rain-rate domain. By the same
region, we mean that the CML and rain gauge are located in a similar
meteorological area. In practice, we select a sample of attenuation
measurements and rain rate observations produced by a CML and
a rain gauge with a distance smaller than u = 30 km. Then, using
those, we learn two mapping functions: 1) G : A → R is a function
that maps attenuation measurements into rain rate observations; 2)
F : R → A is a function that maps rain rate observations to at-
tenuation measurements. To effectively learn G and F , we employ
the idea of cycle consistency, meaning F

(
G
(
X

(j)
i

))
≈ X

(j)
i

and G
(
F
(
y
(j)
i

))
≈ y

(j)
i . Cycle consistency allows us to avoid

directly comparing attenuation measurements and rain rate observa-
tions, eliminating the need for a paired dataset. In addition, to ensure
that the G and F produce samples from R and A domains, respec-
tively. We add two discriminators DR : R −→ (0, 1), DA : A −→
(0, 1) which enforce G and F to output samples that are from the
two domains R and A, respectively as in CycleGAN [17]. Each dis-
criminator is trained to identify if a sample is “fake” or “real” and
later is used to guide the generator to produce the samples from the
correct domain. This results in a min-max optimization problem. At
the end of the training, we take the generator G, which can map
an attenuation measurement sequence to a rain rate observation se-
quence. In the sequel, we describe the loss function of our approach
and the specific neural network architecture used in this work.

3.1 Region Learning via Cycle Consistency
Here, we describe the loss function used for regional learning via

cycle consistency. We begin with adversarial Loss [24]. In adver-
sarial training, a discriminator tries to distinguish between generated
and real data. Then the generator tries to produce samples that fool
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Fig. 2: The model operates across both attenuation and rain rate do-
mains through the selection of a sample from each domain. Subse-
quently, the selected sample from the source domain is transformed
into the destination domain by the generator. This newly generated
sample is then passed to another generator, which converts it back
into a cyclic sample. To ensure that the generated cyclic sample re-
mains consistent with the original input sample, we enforce a condi-
tion of close similarity between the two. Meanwhile, the discrimina-
tor evaluates the similarity of the generated sample to the real sample
and identifies samples generated by the adversary.

the discriminator. This results in the following min-max optimiza-
tion:

min
G

max
D

ℓGAN (G,D,A,R), (5)

where

ℓGAN (G,D,A,R) = Ey∈RlogD(y) (6)
+ Ex∈Alog(1−D(G(x)),

is the adversarial loss term. The generator must be able to fool the
discriminator about the authenticity of its generated samples. Since
we have two domains with corresponding generators G, F and dis-
criminators DR, DA. Thus we employ the adversarial loss twice:
ℓGAN (G,DR,A,R) and ℓGAN (F,DA,R,A) once per generator
and it’s discriminator.

Now, we describe the cycle consistency loss, which forms the
fundamental concept that facilitates regional training. The cycle con-
sistency enforces the models G and F to translate a sample from one
domain to a different domain and back to the original one, namely
F
(
G
(
X

(j)
i

))
≈ X

(j)
i and G

(
F
(
y
(j)
i

))
≈ y

(j)
i . For exam-

ple, in our case, we take a rain-rate sequence and map it into an
attenuation measurement sequence. Then, the cycle consistency en-
sures that the attenuation measurements sequence can be mapped
back to the same rain-rate sequence. Nonetheless, the utilization of
rain estimation dataset presents an inherent imbalance, as detailed in
Section 2. To address this issue, we propose adjusting the loss by
the complementary distribution. Various types of well-known dis-
tributions can be utilized to model the rain rate distribution. In this
work, we use the exponential distribution (7) as a model of rain rate
observations and attenuation measurements distributions [18]:

f(r) = βe−βr ∀r ≥ 0, (7)

where β is the exponential distribution parameter. We fit the param-
eter βA and βB of the exponential distribution using least squares
on a collection of rain rates and dynamic baseline evaluations of the

attenuation measurements [18]. Specifically, we minimize the mod-
ified cycle consistency [17] loss which is defined as:

min
G,F

ℓcyc(G,F ), (8)

where

ℓcyc(G,F ) ≜ Ex∈A((α+ 1− f(x;βA))||F (G(x))− x||1)
+ Ey∈R((α+ 1− f(y;βR))||G(F (y))− y||1). (9)

is the cycle consistency loss and ||a||1 denote the ℓ1 norm of vec-
tor a. The term α ensures that the expectations do not become null.
Notice that ℓcyc addresses the imbalanced datasets problem for the
rain estimation problems by introducing two regularization terms:
fRR(x;βA)) and fRR(y;βR)) which push G towards higher rain
rates values. Finally, we combine the adversarial loss, cycle consis-
tency loss and the rain distribution regularization into a single opti-
mizing problem:

min
G,F

max
DR,DA

ℓ(G,F,A,R), (10)

where

ℓ(G,F,A,R) = ℓGAN (G,DR,A,R)

+ ℓGAN (F,DA,A,R)

+ λℓcyc(G,F ) (11)

is the combined loss function, and λ is a hyper-parameter that con-
trols the effect of cycle consistency loss.

3.2 Network
In this section, we described the specific implementation of the

mapping G, F and the discriminators DR, DA. We use a convo-
lution neural network to implement G, F , DR and DA. We begin
with the description of generator G and F . The generators are built
as follows: starting with three convolution layers followed by three
residual blocks [25]. In the last part of the generators, there are three
transpose convolution layers [26]. After each convolution and trans-
pose convolution, we add a batch-normalization layer [27] followed
by a ReLu non-linear function. In the last generator layer we use a
tanh activation function. An illustration of the generator structure is
presented in Figure 3.a.
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Fig. 3: (a) The pink-colored component is tasked with generating
the rain rate observations based on attenuation measurements. The
counterpart generator that produces the attenuation measurements
from rain rate observations shares similarities with its counterpart,
except for the input and output sizes, which alternate between 64 ×
6 and 64 × 3. (b) The rain rate discriminator is marked in blue.
The attenuation discriminator employs identical components, with
an input shape of 64× 6.

The discriminator has a simpler network structure with three
convolution layers. Batch normalization and ReLu non-linear func-
tions are added after each convolution layer, similar to the generator.
Figure 3.b. shows an illustration of the discriminator structure.



4 Experiment and Results

The dataset was split into 20 CMLs and two rain gauges for
training and nine CMLs, and one rain gauge for validation as shown
in Figure 1. Training took place on June 9th-11th and August 5th-8th,
2011, over seven days, with validation performed on August 5th-8th,
2011. Multiple rain events were considered, and the performance of
inferring rain rate from a set of CMLs in a given region was evaluated
using the root-mean-squared-selective-error (RMSSE) [28] metric
between the closest gauge x and CML y during validation. We de-
fined u=10 km as the distance between a CML and a rain gauge in
the validation set. For the training dataset, any two pairs could be
chosen in the region of u = 30 km. The RMSSE metric for valida-
tion is defined as follows:

RMSSEj =

√√√√√ 1

N

∑
i∈Ij
p

(
G
(
X

(j)
i

)
p
− y

(k(j))
i,p

)2

,

where k(j) is the index of the closest rain gauge to jth CML and
Ij is the set of indexes on which the RMSSE is computed. The set
Ij = {(i, p) : y

(k(j))
i,p > 1||G

(
X

(j)
i

)
p
> 0.5} used for calculat-

ing the RMSSE for high-intensity rain events with actual rain rates
greater than 1 mm/h and predicted rain rates higher than 0.5 mm/h.
p denotes the p element of the vector.

The network had three hidden layers, with 64 filters in the gen-
erator/discriminator’s last/first layer. Adam [29] optimization was
used for stochastic gradient descent. A learning rate of 0.0002 with
a linear decay every 50 epochs, batch size 1, and no dropout were
used. The selected GPU instance was NVIDIA T4. λ = 10 was
used for the cyclic loss, indicating that it was given 10 times more
importance than GAN loss. We set n = 64 for (3) and (4) and α = 0.2
for (9). The RMSSE values were calculated for high-intensity rain
events only, meaning that we included real rain rate events higher
than 1 mm/h and predicted rain rate higher than 0.5 mm/h. The val-
ues of the six validation stations are presented in Figure 4.

Table 1: Steady state metrics of training and validation

Training Validation
GAtoR 0.3189 0.3203
GRtoA 0.8122 0.8122
DR 0.2396 0.1042
DA 0.5092 0.5054
CycleA 0.1196 0.2036
CycleR 0.02355 0.02355
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Fig. 4: RMSSE values of six inferring CMLs in within a 10 km
radius of a nearby rain gauge (marked as orange circle in Figure 1)
for the the validation iteration.

Fig. 5: Predicted accumulated rain rate [blue] vs ground truth accu-
mulated rain rate [orange] for CML #6.

The RMSSE values are low, indicating that the generated attenu-
ation measurements from the CML sequence are close to the ground
truth rain rate observations sequence for all stations in the validation
set.

5 Conclusion & Future work
In this study, we make use of an unpaired dataset of CML-based

attenuation measurements and rain gauge observations to train a rain
estimation model. Cycle consistency between attenuation and rain-
rate domains is used instead of a direct match between specific CML
and rain gauge. The modified cycle consistency accounts for rain
rate imbalance. Experimental results from the Netherlands are pre-
sented and are encouraging. However, there are still unanswered
questions about the necessary amount of rain gauges and CMLs for
a correct and accurate model, the training region size, and obtaining
cycle consistency between CML and an entire rain field covering a
selected area of interest.
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