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1. Introduction

• Many applications in engineering require the estimation of
variables with built-in nonlinear constraints, which leads them
to be modeled as points on a manifold.

• Additionally it is often advantageous to distribute the
computational burden of estimation methods among separate
remote nodes.

• In previous works, we introduced diffusion particle filter (PF)
algorithms for distributed estimation of variables constrained to
the unit hypersphere and the Stiefel manifold.

• Random Exchange (RndEx) and the Adapt-then-Combine
(ATC) diffusion techniques were used.

• Here, we consider a state tracking problem in which the state
evolves as a random walk on the Special Orthogonal Group
SO(n).

• An element of SO(3) can represent the rotational state of a rigid
body.

2. Special Orthogonal Group SO(n)

• The Special Orthogonal Group is a matrix Lie group, closed
with respect to matrix multiplications.

• SO(n) is also a smooth manifold. The tangent space to point
M ∈ SO(n), denoted TM , is the space of n × n real matrices
X such that MTX is skew-symmetric.

• It is possible to move from a point X ∈ TM1
to another point

in TM2
, with M1,M2 ∈ SO(n), using the transport operator

T : TM1
→ TM2

such that T (X) = M2M
−1
1 X.

• It is also possible to map a point S ∈ SO(n) into a point
X ∈ TM and vice-versa using the logarithmic and exponential
maps, respectively:

LogM (S) = M logm(MTS), ExpM (X) = M expm(MTX),

where logm(·) and expm(·) are the matrix logarithm and matrix
exponential functions.

• The tangent space TI is by definition the Lie algebra so(n) of
the matrix Lie group SO(n), the set of all real skew-symmetric
matrices of dimension n× n.

• An n × n skew-symmetric matrix has only d ≜ n(n − 1)/2 free-
varying entries. Thus, we can define a bijective mapping Φ(·)
that associates each skew-symmetric matrix to a vector in Rd.
The inverse mapping is denoted by Φ−1(·).

3. Problem Setup

• Let the states {Sk} ∈ SO(n) be a sequence of random matrices
that evolve according to the random walk

Sk = Exp Sk−1
(Φ−1(vk)),

were k is the time index, {vk} are i.i.d.Gaussian random vectors
with zero mean and covariance matrix λ2I, and λ ∈ R is a
hyperparameter.

• Multiple nodes on a sensor network record the observations
{Yk,r} ∈ Rn×n, such that

p(Yk,r|Sk) = NRn×n(Yk,r|Hk,r(Sk),Ωr,Γr),

where r ∈ {1, ..., R} denotes the r-th node in the network,
Hk,r : Rn×n → Rn×n is a (possibly nonlinear) function, and
NRn×n is the matrix normal p.d.f. in Rn×n.

• Given a realization {Yj,r}, 1 ≤ j ≤ k, 1 ≤ r ≤ R, of
the observations {Yj,r}, we want to recursively estimate Sk
distributedly.

4. ATC Diffusion Particle Filter

• Assume that node r has a posterior p.d.f. pk−1|k−1,r(Sk−1)

conditioned on all network measurements assimilated by node
r up to instant k − 1.

• The ATC diffusion filtering method is divided into two steps:
Adapt Step and Combine Step.

Adapt Step: update pk−1|k−1,r to p̃k|k,r, the posterior p.d.f.,
assimilating the measurements {Yk,u} available at all nodes u
in N(r), the neighborhood of node r.

• Assuming that the observation vectors Yk,u are conditionally
independent from node to node given the state

p̃k|k,r(Sk) ∝

[ ∏
u∈N(r)

p(Yk,u|Sk)

]
×∫

Sk∈SO(n)
p(Sk|Sk−1)pk−1|k−1,r(Sk−1) d(SO(n)).

• If pk−1|k−1,r(Sk−1) is represented by a weighted particle set

{w(q)
k−1,r,S

(q)
k−1,r}, q ∈ {1, ..., Q}, we can build a new weighted

representation {w̃(q)
k,r, S̃

(q)
k,r} for p̃k|k,r(Sk) using a marginal

particle filter:

1) Sample S̃
(q)
k,r ∼

∑Q
q′=1w

(q′)
k−1,r p(Sk|S

(q′)
k−1,r).

2) Evaluate the weights w̃
(q)
k,r ∝

∏
u∈N(r) p(Yk,u|S̃

(q)
k,r).

• The optimal local state estimate S̃k|k,r prior to sensor fusion
at node r is the intrinsic mean S ∈ SO(n) that minimizes
Ep̃k|k,r[d

2
G(S,Sk)].

• The particle filter approximates the intrinsic mean by the
Karcher mean of the weighted particle set {w̃(q)

k,r, S̃
(q)
k,r} on

SO(n), i.e., S̃k|k,r = arg min
S∈G

Q∑
q=1

w̃
(q)
k,rd

2
G(S, S̃

(q)
k,r), and transmits

it to nodes u ∈ {N(r) \ {r}}.

Combine Step: fuse the local state estimates S̃k|k,u, u ∈ N(r)

to obtain a new merged estimate at node r.
• Upon receiving the local state estimates S̃k|k,u from each node
u ∈ {N(r) \ {r}}, node r first computes the Karcher mean

S̄k|k,r = arg min
S∈G

∑
u∈N(r)

ar,u d2G(S, S̃k|k,u),

where {ar,u} is a set of positive real weights such that
∑

u ar,u =
1 for all r.

• Next, node r executes the following steps:

1) Compute X
(q)
k,r = LogS̃k|k,r

(S̃
(q)
k,r) ∈ TS̃k|k,r

, evaluate the skew-

symmetric matrix Z
(q)
k,r = S̃T

k|k,rX
(q)
k,r ∈ so(n), and determine

z
(q)
k,r = Φ(Z

(q)
k,r) ∈ Rd.

2) Fit a d-variate Gaussian approximation πk|k,r to the weighted

particle set {w̃(q)
k,r, z

(q)
k,r}, q ∈ {1, . . . , Q}, computing the

corresponding sample mean mk|k,r and sample covariance
matrix Pk|k,r.

3) Transmit mk|k,r and Pk|k,r to nodes u ∈ {N(r) \ {r}}.
4) Receive mk|k,u and Pk|k,u from nodes u ∈ {N(r) \ {r}}.
5) Combine the local p.d.f.’s πk|k,u, u ∈ N(r), into a fused p.d.f.

π̆k|k,r using the Geometric Average fusion rule

π̆k|k,r(zk) ∝
∏

u∈N(r)

[πk|k,u(zk)]
ar,u,

which minimizes
∑

u ar,uDKL(π̆∥πk|k,u), where DKL is the
Kullback-Leibler divergence.

6) Resample z̆
(q)
k,r ∼ π̆k|k,r(zk) ∈ Rd, evaluate X̆

(q)
k,r = S̄k|k,rZ̆

(q)
k,r

≜ S̄k|k,rΦ
−1(z̆

(q)
k,r) ∈ TS̄k|k,r

, then recover S(q)
k,r = ExpS̄k|k,r

(X̆
(q)
k,r)

∈ SO(n).

7) Reset the particle weights w
(q)
k,r = 1/Q, q ∈ {1, . . . , Q}.

8) Compute the fused state estimate Ŝk|k,r at node r as the

Karcher mean of {w(q)
k,r,S

(q)
k,r}, which represents the final

posterior pk|k,r propagated to the next time step.

5. RndEx Diffusion PF

• The RndEx Algorithm has two steps: Random Exchange and
Data Assimilation.

• In the Random Exchange step, a node l exchanges with
another randomly chosen node r a compressed representation
of its posterior p.d.f. p(Sk−1|Ỹ1:k−1,l), in which Ỹ1:k−1,l denotes
all observations assimilated up to instant k.

• At the end of the Random Exchange Step, node r receives the
compressed representation and rebuilds the particle set.

• In the Data Assimilation step, node r samples new particles
and updates the particles’ weights as

S
(q)
k,r ∼ p(Sk|S

(q)
k−1,l), w

(q)
k,r ∝ w

(q)
k−1,l

 ∏
u∈N(r)

p(Yk,u|S
(q)
k,r)

 .

• The updated set {w(q)
k,r,S

(q)
k,r} is then a Monte Carlo

representation of the posterior p.d.f. p(Sk| Ỹk,r, Ỹ1:k−1,l) ≜
p(Sk| Ỹ1:k,r).

6. Simulation Results

• We ran Monte Carlo simulations with 1,000 independent runs.

• The network has five nodes: nodes 1 to 4 are on the vertices
of a square and node 5 is at its center and is connected to all
other nodes.

• The noise covariance matrices were set to Ωr = I and Γr =
I · 10−αr/10, with αr equal to 3, 6, 10, 13 and 20 dB for
r = 1, . . . , 5, respectively.

• The weights {ar,u} are determined by the Metropolis rule. We
assumed that n = 3, Q = 200, and λ = 0.15.

• Hk,r was defined as
[
Hk,r(Sk)

]
i,j

= h
(
[Sk]i,j

)
and h(·) : R 7→

R is scalar.

• We employed two formulations for h(·), namely, A)
h(x) = x3 − 1/2, and B) h(x) = sat(x; 1/2), where

sat(x; β) =
{
x, |x| < β,
β · x/|x|, |x| ≥ β.

• For comparison, we ran in the same setup i) a centralized EKF
(Euclid.-EKF), ii) a centralized manifold-constrained EKF (MC-
EKF), iii) Particle filters (Isol-PF) that operate in isolation at
each node, iv) a centralized particle filter (Joint-PF), and v) a
modified likelihood consensus distributed PF (LC-PF).
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7. Conclusions

• We introduced new distributed diffusion PFs to track a
sequence of matrices that evolve on the Special Orthogonal
Group.

• The algorithms employ a Gaussian approximation of the
weighted particle set defined in an isomorphism of the Lie
algebra so(n).

• Simulation results show that the performance of the proposed
algorithms surpasses or equals that of an alternative distributed
PF at a lower communication cost, and outperform a manifold-
constrained centralized EKF.
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