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‘ 1. Introduction |

« Many applications in engineering require the estimation of
variables with built-in nonlinear constraints, which leads them
to be modeled as points on a manifold.

« Additionally it is often advantageous to distribute the
computational burden of estimation methods among separate
remote nodes.

* In previous works, we introduced diffusion particle filter (PF)
algorithms for distributed estimation of variables constrained to
the unit hypersphere and the Stiefel manifold.

« Random Exchange (RndEx) and the Adapt-then-Combine
(ATC) diffusion techniques were used.

* Here, we consider a state tracking problem in which the state
evolves as a random walk on the Special Orthogonal Group
SO0(n).

* An element of SO(3) can represent the rotational state of a rigid
body.

2. Special Orthogonal Group SO(n)

* The Special Orthogonal Group is a matrix Lie group, closed
with respect to matrix multiplications.

« SO(n) is also a smooth manifold. The tangent space to point
M € SO(n), denoted Ty, is the space of n x n real matrices
X such that M1 X is skew-symmetric.

* It is possible to move from a point X € T, to another point
in Ty, with My, My € SO(n), using the transport operator
T : Tag, — Tayg, such that 7(X) = MoM; ' X.

* It is also possible to map a point § € SO(n) into a point
X € Ths and vice-versa using the logarithmic and exponential
maps, respectively:

Logas(S) = M logm(M?’'S),

where logm(-) and expm(-) are the matrix logarithm and matrix
exponential functions.

* The tangent space T7 is by definition the Lie algebra so(n) of
the matrix Lie group SO(n), the set of all real skew-symmetric
matrices of dimension n x n.
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S=Exp (X) so(n) c R™*"

« An n x n skew-symmetric matrix has only d = n(n — 1)/2 free-
varying entries. Thus, we can define a bijective mapping &(-)
that associates each skew-symmetric matrix to a vector in R€.
The inverse mapping is denoted by &~ 1(-).
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Expas(X) = M expm(M' X),
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‘ 3. Problem Setup |

* Let the states {S;.} € SO(n) be a sequence of random matrices
that evolve according to the random walk

Si=Exps, (7 (vp)),
were k is the time index, {v;.} are i.i.d.Gaussian random vectors

with zero mean and covariance matrix \“I, and A € R is a
hyperparameter.

* Multiple nodes on a sensor network record the observations
{Yi,} € R"", such that

p(Yy | Sk) = Nrwen (Y | Hi - (Sk), 7, Tr),
where r € {1,..., R} denotes the r-th node in the network,
H;, R — R" " s a (possibly nonlinear) function, and
NR;M is the matrix normal p.d.f. in R**",
Given a realization {Y,}, 1 < j < k, 1 < r < R, of

the observations {Y, .}, we want to recursively estimate S
distributedly.

‘ 4. ATC Diffusion Particle Filter |

* Assume that node r has a posterior p.d.f. p,_j;_1,(Sk—1)
conditioned on all network measurements assimilated by node
r up to instant k£ — 1.

« The ATC diffusion filtering method is divided into two steps:
Adapt Step and Combine Step.

Adapt Step: update p;_q;_1, 1O Py, the posterior p.d.f.,
assimilating the measurements {Y}. ,} available at all nodes u
in N(r), the neighborhood of node r.

* Assuming that the observation vectors Y, , are conditionally
iIndependent from node to node given the state
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o |f pk_1|k_177,.(5k_1) IS represented by a weighted particle set

{w](jl_)”,sliq_)”}, q € {1,...,Q}, we can build a new weighted

representation {@]iqi,gliqz} for pyx,(Sk) using a marginal
particle filter:

1) Sample §,<€an ~ Z§=1 w/iq—)u p(Sk\S]({qJM).

2) Evaluate the weights zb]iqfn o | [,e N(r) p<Yk,u“§](€q7>a)-

* The optimal local state estimate S*,{‘kﬂa prior to sensor fusion
at node r is the intrinsic mean S € SO(n) that minimizes
Ep,,.., [de (S, Sy

Pk|k.r
* The particle filter approximates the intrinsic mean by the
Karcher mean of the weighted particle set {w%}n,sg} on
@

- S _ - -(q) 72 () -
S50(n), 1.e., Sy, = arg énelng_:lwk rdG(Sv‘Sk,r>v and transmits
itto nodes u € {N(r)\ {r}}.
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Combine Step: fuse the local state estimates Sk‘kju, u € N(r)
to obtain a new merged estimate at node r.

» Upon receiving the local state estimates Sy, ,, from each node
u € {N(r)\ {r}}, node r first computes the Karcher mean
Sk’kﬂa = arg min Z Qr.y dé(S, Sk|k,u)>

50 ueN(r)

where {a, .} is a set of positive real weights such that > ", a,, =
1 for all r.

* Next, node r executes the following steps:

(9) _ (gl .
1) Compute X = Logg (S;.) € Tg

symmetric matrix Zliq}n = Sl X]iqz € so(n), and determine

k|k,r
2! = a(2,7) e R

2) Fit a d-variate Gaussian approximation ;. . to the weighted

evaluate the skew-

particle set {u?](f) z]iqz}, qg € A{1,...,Q}, computing the

r?
corresponding sample mean my; . and sample covariance

matrix Py, ..

3) Transmit m;,;. .. and P, ;. .. to nodes u € {N(r) \ {r}}.

4) Receive my,;. ,, and Py ;. from nodes u € {N(r) \ {r}}.

5) Combine the local p.d.f’s m ,, v € N(r), into a fused p.d.f.
Tr |k Using the Geometric Average fusion rule

ez o T Fapa(ze)) ™
ueN (r)
which minimizes »_, aru D (7|7 ,,), Where Dy is the
Kullback-Leibler divergence.
6) Resample ig ~ Tgko(zr) € RY, evaluate )U(,iqﬁ — SW’TZUISIQ

= Sk\kﬂ‘l(%é‘fi) S Tgkw, then recover S]iqi = Expskm()u(,g)a)
€ SO(n).

/) Reset the particle weights w]({qzn =1/Q,q e {l,...,Q}.

8) Compute the fused state estimate SkWT at node r as the
Karcher mean of {wgf) S,i(ﬁ}, which represents the final

rr?

posterior py;. . propagated to the next time step.

‘ 5. RndEXx Diffusion PF |

» The RndEx Algorithm has two steps: Random Exchange and
Data Assimilation.

*In the Random Exchange step, a node [ exchanges with
another randomly chosen node r a compressed representation
of its posterior p.d.f. p(Sy_1|Y1.,_1,), in which Y7, ; denotes
all observations assimilated up to instant k.

* At the end of the Random Exchange Step, node r receives the
compressed representation and rebuilds the particle set.

* In the Data Assimilation step, node r samples new particles
and updates the particles’ weights as
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* The updated set {w,iqi,sliqz} is then a Monte Carlo

A

representation of the posterior p.d.f. p(Sy| Yy, Yir_11) =
p(Sk| Y11 1)-

‘ 6. Simulation Results |

* We ran Monte Carlo simulations with 1,000 independent runs.

* The network has five nodes: nodes 1 to 4 are on the vertices
of a square and node 5 is at its center and is connected to all
other nodes.

 The noise covariance matrices were setto 2, = I and I’ =
I-10~%/10 with o, equal to 3, 6, 10, 13 and 20 dB for
r=1,...,5, respectively.

» The weights {a,,} are determined by the Metropolis rule. We
assumed that n = 3, () = 200, and A = 0.15.

*H,. » was defined as [’Hk’r(Sk)Lj = h ([Sk]i’j) and A(-) : R —
R is scalar.

We employed two formulations for h(-), namely, A)
hiz) = a° — 1/2, and B) h(z) = sat(z;1/2), where
T, | < B,

sat(:)s;ﬁ) — {6x/\w|, ]:C| > 3.

« For comparison, we ran in the same setup i) a centralized EKF
(Euclid.-EKF), ii) a centralized manifold-constrained EKF (MC-
EKF), i) Particle filters (Isol-PF) that operate in isolation at
each node, iv) a centralized particle filter (Joint-PF), and v) a
modified likelihood consensus distributed PF (LC-PF).
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‘ 7. Conclusions |

 We introduced new distributed diffusion PFs to track a
sequence of matrices that evolve on the Special Orthogonal
Group.

o 4

* The algorithms employ a Gaussian approximation of the
weighted particle set defined in an isomorphism of the Lie
algebra so(n).

« Simulation results show that the performance of the proposed
algorithms surpasses or equals that of an alternative distributed
PF at a lower communication cost, and outperform a manifold-
constrained centralized EKF.



