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1. Introduction

• The joint rotational and translational state of a rigid body can be
parameterized as an element of the Special Euclidean Group
SE(3).

• Modern engineering systems involve cooperation between
multiple agents on a partially connected network to run a
common task, e.g., estimate a hidden state.

• In previous works, we introduced diffusion particle filters (PF)
to perform cooperative tracking of states that evolved on the
Spherical and the Stiefel manifolds and the Special Orthogonal
Group.

• Diffusion PFs include a data assimilation step where agents
update their beliefs about the unknown states, assimilating
local measurements and measurements from neighboring
nodes.

• The local updated beliefs are then exchanged between
nodes in a compressed form, using Gaussian parametric
approximations on the Lie Algebra associated to SE(n).

2. Special Euclidean Group SE(n)

• The Special Euclidean Group SE(n) is a matrix Lie group. An
element S of SE(n) is given as

S =

[
Ω u
01×n 1

]
,

where Ω is a member of the Special Orthogonal Group SO(n),
u ∈ Rn, and 01×n denotes a vector with null entries.

• The group SE(n) has dimension d ≜ n(n+1)/2 and, for n = 3, it
corresponds to the set of all possible translations and rotations
of a 3-dimensional rigid object.

• SE(n) is also a differentiable manifold. Thus, we can define a
tangent space TS at each point S ∈ SE(n).

• The Lie algebra se(n) is, by definition, the tangent space to the
identity matrix I, i.e., TI .

• A matrix S ∈ SE(n) can be mapped into a matrix X ∈ se(n)
using the logarithmic map Log : SE(n) → se(n).

• For SE(n), Log(S), is the usual matrix logarithmic function,
denoted logm.

• For a matrix S ∈ SE(n),

Log(S) =
[

logm(Ω) V u
01×n 0

]
,

where V = I +
∑∞

m=1Ω
m/(m + 1)!.

• For n = 3, Z = logm(Ω) has the form

Z =

 0 −c b
c 0 −a
−b a 0

 .

• Thus, X = Log(S) ∈ se(n) is isomorphic to a vector x ∈ Rd,
and we can define a bijective mapping Φ : se(n) → Rd, such that

Φ (X) =
[
zT (V u)T

]T
∈ Rd where z is a vector that collects

the free-varying entries of Z.

3. Problem Setup

• Let Sk ∈ SE(n) denote an unknown state at time k ≥ 0 that
evolves according to the random walk

Sk = Sk−1 Exp
(
Φ−1(ϵk)

)
, k > 0,

with p(S0) ∝ 1, where {ϵk} is a sequence of i.i.d.Gaussian
random vectors in Rd with zero mean and covariance matrix
Λk.

• The nodes record at each instant k the observations

Yk,r = Hr(ΠSk) +Wk,r, k > 0,

where r ∈ {1, ..., R} denotes the r-th node in the network,
Hr(·) :
Rn×(n+1) 7→ Rn×(n+1) is a general function, Π ∈ Rn×(n+1) is
an (n + 1) × (n + 1) identity matrix without its bottommost row,
and {Wk,r} is a sequence of i.i.d.samples of a Matrix Gaussian
p.d.f. Nn,n+1(Wk,r|0n,n+1,Ψr,Γr).

• Given the observations {Yl,r}, 0 ≤ l ≤ k, 0 ≤ r ≤ R, our goal is
to recursively estimate Sk in a distributed fashion.

4. RndEx Diffusion PF

• The RndEx Algorithm has two steps: Random Exchange and
Data Assimilation.

• In the Random Exchange step, a node l exchanges
with another randomly chosen node r its posterior p.d.f.
p(Sk−1|Ỹ1:k−1,l), in which Ỹ1:k−1,l denotes all observations
assimilated up to instant k.

• Suppose that the posterior p.d.f. is approximated by the
weighted particle set {w(q)

k−1,l,S
(q)
k−1,l}, q = 1, ..., Q, Q ≫ 1.

• Before the exchange, node l compresses the representation
using a Gaussian parametric approximation as follows.

1) Given {w(q)
k−1,l,S

(q)
k−1,l} compute its centroid Ŝk−1,r as

Ŝ<i+1>
k−1,l = Ŝ<i>

k−1,l · expm

 Q∑
q=1

w
(q)
k−1,l logm

((
Ŝ<i>
k−1,l

)−1
S
(q)
k−1,l

) ,

where Ŝ<i>
k−1,l denotes the i-th estimate of the weighted average,

with Ŝ<0>
k−1,l chosen as a random element of the particle set.

2) Then, we evaluate x
(q)
k−1,l = Φ

(
logm

(
Ŝ−1
k−1,lS

(q)
k−1,l

))
∈ Rd.

3) The weighted particle set {w(q)
k−1,l,x

(q)
k−1,l} is then approximated

by a Gaussian p.d.f.via moment matching, with sample
moments x̄k−1,l and Σk−1,l.

• At the end of the Random Exchange Step, node r receives
{x̄k−1,l;Σk−1,l; Ŝk−1,l} and rebuilds the particle set as

x̃
(q)
k−1,l ∼ N

(
xk−1|x̄k−1,l;Σk−1,l

)
,

S̃
(q)
k−1,l = Ŝk−1,l expm

(
Φ−1(x̃

(q)
k−1,l)

)
w̃
(q)
k−1,l =

1

Q
,

where q ∈ {1, ..., Q} and N (s|µ;Θ) denotes a (vector)
multivariate Gaussian p.d.f.with argument s, parameterized by
the mean vector µ and the covariance matrix Θ.

• In the Data Assimilation step, node r samples new particles
from the prior importance function

S
(q)
k,r ∼ p(Sk|S

(q)
k−1,l),

and updates the particles’ weights as

w
(q)
k,r ∝ w

(q)
k−1,l

 ∏
u∈Ñ(r)

p(Yk,u|S
(q)
k,r)

 ,

in which Ñ(r) denotes the r−th node closed neighborhood.

• The updated set {w(q)
k,r,S

(q)
k,r} is then a Monte Carlo

representation of the posterior p.d.f. p(Sk| Ỹk,r, Ỹ1:k−1,l) ≜
p(Sk| Ỹ1:k,r).

• State estimates can be computed as the centroid of this particle
set.

5. Alternative Formulation

• Alternatively, the state components Ω
(q)
k−1,l and u

(q)
k−1,l can be

separately compressed:

1) Given {w(q)
k−1,l,S

(q)
k−1,l} compute the centroids

Ω̂<i+1>
k−1,l =Ω̂<i>

k−1,lexpm

 Q∑
q=1

w
(q)
k−1,l logm

((
Ω̂<i>
k−1,l

)T
Ω
(q)
k−1,l

) ,

ûk−1,l =

Q∑
q=1

w
(q)
k−1,lu

(q)
k−1,l,

2) Then, evaluate x
(q)
k−1,l = Φ

(
logm

(
Ω̂T
k−1,lΩ

(q)
k−1,l

))
∈ Rd.

3) The weighted particle set {w(q)
k−1,l,x

(q)
k−1,l,u

(q)
k−1,l} is then

approximated by a Gaussian p.d.f.via moment matching.
• At the end of the Random Exchange Step, node r receives
{x̄k−1,l; ūk−1,l;Σk−1,l; Ω̂k−1,l} and rebuilds the particle set as
previously.

6. Simulation Results

• We performed a numerical simulation with 300 independent
trials.

• We set n = 3 and Q = 300. In each trial, 200 synthetic data
samples were generated.

• We used a network with five nodes: nodes 1 to 4 are on the
vertices of a square and node 5 is at its center and is connected
to all other nodes.

• The noise covariance matrices were set to Ψr = I and Γr =
I · 10−αr/10, with αr equal to 3, 6, 10, 13 and 20 dB for
r = 1, . . . , 5, respectively. The driving noise covariance matrix
Λk was set to 0.05 I.

• For comparison, we ran in the same setup three competing
algorithms: i) bootstrap PFs operating isolatedly in each node
(Isol.-PF), ii) a bootstrap PF with access to all observations
(Joint-PF), and ii) a SE(n)-constrained EKF.

• We assumed that [Hr(X)]i,j = h([X ]i,j), and set h(x) =
tanh(x/β)/β with β = 1.7.

• The algorithm’s performance was evaluated in terms of
the squared geodesic distance in SE(n), i.e., d2(Sk, Ŝk) =
∥logm(ΩT

k Ω̂k)∥2F + ∥uk − ûk∥2.
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7. Conclusions

• This paper described two novel RndEx particle filters for
tracking the state of a dynamic system that evolves on the
Special Euclidean Group.

• The first algorithm exchanges Gaussian parametric
approximations built on a vector space isomorphic to se(n).

• The second algorithm directly computes approximations for the
translational information u

(q)
k−1,l, performing computations on

the Lie algebra of so(n) only for rotation matrices Ω
(q)
k−1,l.

• Experimental results show that the proposed methods
perform similarly to a centralized PF-based estimator, greatly
outperforming PFs operating in isolation and an extended
Kalman filter, at increased computational cost.
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