DISTRIBUTED BAYESIAN TRACKING ON THE SPECIAL EUCLIDEAN GROUP
USING LIE ALGEBRA PARAMETRIC APPROXIMATIONS

Claudio J. Bordin Jr. ${ }^{1}$, Caio G. de Figueredo ${ }^{2}$, and Marcelo G. S. Bruno

claudio.bordin@ufabc.edu.br caio.figueredo@ifce.edu.br bruno@ita.br
${ }^{1}$ Universidade Federal do ABC, Brazil \quad Instituto Federal do Ceará, Brazil ${ }^{3}$ Instituto Tecnológico de Aeronáutica, Brazi

Introduction

The joint rotational and translational state of a rigid body can be parameterized as an element of the Special Euclidean Group SE(3)
Modern engineering systems involve cooperation between multiple agents on a partially connected network to run common task, e.g., estimate a hidden state
In previous works, we introduced diffusion particle filters (PF) to perform cooperative tracking of states that evolved on the Spherical and the Stiefel manifolds and the Special Orthogona Group
Diffusion PFs include a data assimilation step where agents pdate their beliefs about the unknown states, assimilating local measur
nodes.
The local updated beliefs are then exchanged between nodes in a compressed form, using Gaussian parametric approximations on the Lie Algebra associated to $S E(n)$.

2. Special Euclidean Group $S E(n)$

The Special Euclidean Group $\mathrm{SE}(n)$ is a matrix Lie group. An element S of $\mathrm{SE}(n)$ is given as

$$
S=\left[\begin{array}{cc}
\Omega & u \\
0_{1 \times n} & 1
\end{array}\right]
$$

here Ω is a member of the Special Orthogonal Group SO(n $\in \mathbb{R}^{n}$, and $0_{1 \times n}$ denotes a vector with null entries
The group SE (n) has dimension $d \triangleq n(n+1) / 2$ and, for $n=3$, it corresponds to the set of all possible translations and rotations of a 3 -dimensional rigid object.
$\mathrm{SE}(n)$ is also a differentiable manifold. Thus, we can define a angent space \mathcal{T}_{S} at each point $S \in \mathrm{SE}(\mathrm{n})$.
The Lie algebra $\mathfrak{s e}(n)$ is, by definition, the tangent space to the dentity matrix I, i.e., \mathcal{T}_{I}
A matrix $S \in \mathrm{SE}(n)$ can be mapped into a matrix $X \in \mathfrak{s e}(n)$ using the logarithmic map Log : $\mathrm{SE}(n) \rightarrow \mathfrak{s e}(n)$.
For $\operatorname{SE}(n), \log (S)$, is the usual matrix logarithmic function, denoted logm
For a matrix $\boldsymbol{S} \in \mathbf{S E}(n)$

$$
\log (\boldsymbol{S})=\left[\begin{array}{ll}
\log m(\boldsymbol{\Omega}) & \boldsymbol{V} \boldsymbol{u} \\
\mathbf{0}_{1 \times n} & 0
\end{array}\right]
$$

where $\boldsymbol{V}=\boldsymbol{I}+\sum_{m=1}^{\infty} \boldsymbol{\Omega}^{m} /(m+1)!$.
-For $n=3, \boldsymbol{Z}=\operatorname{logm}(\boldsymbol{\Omega})$ has the form

$$
\boldsymbol{Z}=\left[\begin{array}{ccc}
0 & -c & b \\
c & 0 & -a \\
-b & a & 0
\end{array}\right]
$$

Thus, $\boldsymbol{X}=\log (\boldsymbol{S}) \in \mathfrak{s e}(n)$ is isomorphic to a vector $\boldsymbol{x} \in \mathbb{R}^{d}$ and we candeabien mapping Φ $\Phi(\boldsymbol{X})=\left[\boldsymbol{z}^{T}(\boldsymbol{V} \boldsymbol{u})^{T}\right]^{T} \in \mathbb{R}^{d}$ where \boldsymbol{z} is a vector that collects the free-varying entries of Z.

3. Problem Setup

Let $\boldsymbol{S}_{k} \in \operatorname{SE}(n)$ denote an unknown state at time $k \geq 0$ that evolves according to the random walk

$$
\boldsymbol{S}_{k}=\boldsymbol{S}_{k-1} \operatorname{Exp}\left(\Phi^{-1}\left(\boldsymbol{\epsilon}_{k}\right)\right), k>0,
$$

with $p\left(\boldsymbol{S}_{0}\right) \propto 1$, where $\left\{\boldsymbol{\epsilon}_{k}\right\}$ is a sequence of i.i.d.Gaussian random vectors in \mathbb{R}^{d} with zero mean and covariance matrix Λ_{k}.
-
The
.
The nodes record at each instant k the observations

$$
\boldsymbol{Y}_{k, r}=\boldsymbol{\mathcal { H }}_{r}\left(\boldsymbol{\Pi} \boldsymbol{S}_{k}\right)+\boldsymbol{W}_{k, r}, \quad k>0,
$$

where $r \in\{1, \ldots, R\}$ denotes the r-th node in the network $\mathbb{R}^{n \times(n+1)} \mapsto \mathbb{R}^{n \times(n+1)}$ is a general function, $\Pi \in \mathbb{R}^{n \times(n+1)}$ is an $(n+1) \times(n+1)$ identity matrix without its bottommost row and $\left\{\boldsymbol{W}_{k, r}\right\}$ is a sequence of i.i.d. samples of a Matrix Gaussia p.d.f. $\mathcal{N}_{n, n+1}\left(\boldsymbol{W}_{k, r} \boldsymbol{0}_{n, n+1}, \boldsymbol{\Psi}_{r}, \mathbf{I}_{r}\right)$ Given the observations $\left\{\boldsymbol{Y}_{l, r}\right\}, 0 \leq l \leq k, 0 \leq r \leq R$, our goal is or recursively estimate S_{k} in a distributed fashion.

4. RndEx Diffusion PF

The RndEx Algorithm has two steps: Random Exchange and Data Assimilation.
In the Random Exchange step, a node l exchanges with another randomly chosen node r its posterior p.d.f. $p\left(\boldsymbol{S}_{k-1} \mid \boldsymbol{T}_{1: k-1, l}\right)$, in which
assimilated up to instant k.
Suppose that the posterior p.d.f. is approximated by the weighted particle set $\left\{w_{k-1, l}^{(q)}, \boldsymbol{S}_{k-1,\}}^{(q)}\right\}, q=1, \ldots, Q, Q \gg 1$

Before the exchange, node l compresses the representation using a Gaussian parametric approximation as follows.
) Given $\left\{w_{k-1, l}^{(q)}, \boldsymbol{S}_{k-1, l}^{(q)}\right\}$ compute its centroid $\hat{\boldsymbol{S}}_{k-1, r}$ as
$\hat{\boldsymbol{S}}_{k-1, l}^{<i+1>}=\hat{\boldsymbol{S}}_{k-1, l}^{<i>} \cdot \operatorname{expm}\left[\sum_{q=1}^{Q} w_{k-1, l}^{(q)} \operatorname{logm}\left(\left(\hat{\boldsymbol{S}}_{k-1, l}^{<i>}\right)^{-1} \boldsymbol{S}_{k-1, l}^{(q)}\right)\right]$
where $\hat{S}_{k i>}^{<i>}$, denotes the i-th estimate of the weighted average, with $\hat{\boldsymbol{S}}_{k-1, l}^{<01,}$ chosen as a random element of the particle set.
2) Then, we evaluate $\boldsymbol{x}_{k-1, l}^{(q)}=\Phi\left(\operatorname{logm}\left(\hat{\boldsymbol{S}}_{k-1, l}^{-1} \boldsymbol{S}_{k-1, l}^{(q)}\right)\right) \in \mathbb{R}^{d}$.
3) The weighted particle set $\left\{w_{k-1, l}^{(q)}, x_{k-1, l}^{(q)}\right\}$ is then approximated by a Gaussian p.d.f.via moment matching, with sample moments $\overline{\boldsymbol{x}}_{k-1, l}$ and Σ_{k-1}
At the end of the Random Exchange Step, node r receives $\left\{\overline{\boldsymbol{x}}_{k-1, l} ; \boldsymbol{\Sigma}_{k-1, l}, \hat{\boldsymbol{S}}_{k-1, l}\right\}$ and rebuilds the particle set as

$$
\begin{aligned}
& \tilde{\boldsymbol{x}}_{k-1, l}^{(q)} \sim \mathcal{N}\left(\boldsymbol{x}_{k-1} \mid \overline{\boldsymbol{x}}_{k-1, l} \boldsymbol{\Sigma}_{k-1, l}\right), \\
& \tilde{\boldsymbol{S}}_{k-1, l}^{(q)}=\hat{\boldsymbol{S}}_{k-1, l} \operatorname{expm}\left(\Phi^{-1}\left(\tilde{\boldsymbol{x}}_{k-1, l}^{(q)}\right)\right) \\
& \tilde{w}_{k-1, l}^{(q)}=\frac{1}{Q},
\end{aligned}
$$

where $q \in\{1, \ldots, Q\}$ and $\mathcal{N}(s \mid \mu ; \boldsymbol{\Theta})$ denotes a (vector) multivariate Gaussian p.d.f.with argument s, parameterized by the mean vector μ and the covariance matrix Θ.
In the Data Assimilation step, node r samples new particles from the prior importance function

$$
\boldsymbol{S}_{k, r}^{(q)} \sim p\left(\boldsymbol{S}_{k} \mid \boldsymbol{S}_{k-1, l}^{(q)}\right.
$$

and updates the particles' weights as

$$
w_{k, r}^{(q)} \propto w_{k-1, l}^{(q)}\left[\prod_{u \in \hat{N}(r)} p\left(Y_{k, u} \mid \boldsymbol{S}_{k, r}^{(q)}\right)\right]
$$

in which $\tilde{N}(r)$ denotes the r-th node closed neighborhood -The updated set $\left\{w_{k, r}^{(q)} \boldsymbol{S}_{k, r}^{q)}\right\}$ is then a Monte Carlo representation of the posterior p.d.f. $p\left(\boldsymbol{S}_{k} \mid \tilde{\boldsymbol{Y}}_{k, r}, \dot{\boldsymbol{Y}}_{1 \cdot k-1, l}\right) \triangleq$ $p\left(\boldsymbol{S}_{k} \mid \boldsymbol{Y}_{1: k, r}\right)$
State estimates can be computed as the centroid of this particle set.

5. Alternative Formulation

Alternatively, the state components $\boldsymbol{\Omega}_{k-1, l}^{(q)}$ and $\boldsymbol{u}_{k-1, l}^{(q)}$ can be separately compressed:
Given $\left\{w_{k-1, l}^{(q)}, \boldsymbol{S}_{k-1, l}^{(q)}\right\}$ compute the centroids
$\hat{\Omega}_{k-1, l}^{<i+1>}=\hat{\boldsymbol{\Omega}}_{k-1, l}^{<i>} \operatorname{expm}\left[\sum_{q=1}^{Q} w_{k-1, l}^{(q)} \operatorname{logm}\left(\left(\hat{\Omega}_{k-1, l}^{<i>}\right)^{T} \Omega_{k-1, l}^{(q)}\right)\right]$ $\hat{\boldsymbol{u}}_{k-1, l}=\sum_{q=1}^{Q} w_{k-1, l}^{(q)} \boldsymbol{u}_{k-1, l}^{(q)}$,
2) Then, evaluate $\boldsymbol{x}_{k-1, l}^{(q)}=\Phi\left(\operatorname{logm}\left(\hat{\Omega}_{k-1, l}^{T} \boldsymbol{\Omega}_{k-1, l}^{(q)}\right)\right) \in \mathbb{R}^{d}$.
3) The weighted particle set $\left\{w_{k-1, l}^{(q)}, \boldsymbol{x}_{k-1, l}^{(q)}, \boldsymbol{u}_{k-1, l}^{(q)}\right\}$ is then approximated by a Gaussian p.d.f.via moment matching. - At the end of the Random Exchange Step, node r receives $\left\{\overline{\boldsymbol{x}}_{k-1, l} ; \overline{\boldsymbol{u}}_{k-1, l} ; \boldsymbol{\Sigma}_{k-1, l} ; \hat{\boldsymbol{\Omega}}_{k-1, l}\right\}$ and rebuilds the particle set as

6. Simulation Result

We performed a numerical simulation with 300 independen trials.
We set $n=3$ and $Q=300$. In each trial, 200 synthetic data samples were generated
We used a network with five nodes: nodes 1 to 4 are on the vertices of a square and node 5 is at its center and is connected to all other nodes.
The noise covariance matrices were set to $\Psi_{r}=I$ and Γ_{r} $I \cdot 10^{-\alpha_{r} / 10}$, with α_{r} equal to $3,6,10,13$ and 20 dB fo $=1, \ldots, 5$, respectively. The driving noise covariance matrix $\boldsymbol{\Lambda}_{k}$ was set to $0.05 \boldsymbol{I}$.
For comparison, we ran in the same setup three competing algorithms: i) bootstrap PFs operating isolatedly in each node (lsol.-PF), ii) a bootstrap PF with access
We assumed that $\left[\mathcal{H}_{r}(\boldsymbol{X})\right]_{i, j}=h\left([\boldsymbol{X}]_{i, j}\right)$, and set $h(x)=$ $\tanh (x / \beta) / \beta$ with $\beta=1$.7.
The algorithm's performance was evaluated in terms of he squared geodesic distance in $\mathrm{SE}(n)$, i.e., $d^{2}\left(\boldsymbol{S}_{k}, \hat{\boldsymbol{S}}_{k}\right)$ $\| \operatorname{logm}\left(\boldsymbol{\Omega}_{k}^{T} \hat{\boldsymbol{\Omega}}_{k}\left\|_{F}^{2}+\right\| \boldsymbol{u}_{k}-\hat{\boldsymbol{u}}_{k} \|^{2}\right.$.

7. Conclusion

This paper described two novel RndEx particle filters fo racking the state of a dynamic system that evolves on th Special Euclidean Group.
The first algorithm exchanges Gaussian parametri approximations built on a vector space isomorphic to $\mathfrak{s e}(n)$. The second algorithm directly computes approximations for the translational information $\boldsymbol{u}_{k-1,1,}^{(q)}$, performing computations on he Lie algebra of $\mathfrak{s o}(n)$ only for rotation matrices $\boldsymbol{\Omega}_{k-1, t}^{(q)}$
Experimental results show that the proposed method perform similarly to a centralized PF-based estimator, greatly outperforming PFs operating in isolation and an extende Kalman filter at increased computational cost.

