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‘ 1. Introduction |

* The joint rotational and translational state of a rigid body can be
parameterized as an element of the Special Euclidean Group
SE(3).

 Modern engineering systems involve cooperation between
multiple agents on a partially connected network to run a
common task, e.g., estimate a hidden state.

* In previous works, we introduced diffusion particle filters (PF)
to perform cooperative tracking of states that evolved on the
Spherical and the Stiefel manifolds and the Special Orthogonal
Group.

* Diffusion PFs include a data assimilation step where agents
update their beliefs about the unknown states, assimilating
local measurements and measurements from neighboring
nodes.

 The local updated beliefs are then exchanged between
nodes in a compressed form, using Gaussian parametric
approximations on the Lie Algebra associated to SE(n).

2. Special Euclidean Group SFE(n)

* The Special Euclidean Group SE(n) is a matrix Lie group. An
element S of SE(n) is given as

Y u
S = :
lolxn 1 ]

where € is a member of the Special Orthogonal Group SO(n),
u € R", and 0y «,, denotes a vector with null entries.

» The group SE(n) has dimension d £ n(n+1)/2 and, for n = 3, it
corresponds to the set of all possible translations and rotations
of a 3-dimensional rigid object.

* SE(n) is also a differentiable manifold. Thus, we can define a
tangent space Tg at each point S € SE(n).

* The Lie algebra se(n) is, by definition, the tangent space to the
identity matrix I, i.e., 7Ty.

* A matrix S € SE(n) can be mapped into a matrix X € se(n)
using the logarithmic map Log : SE(n) — se(n).

* For SE(n), Log(S), is the usual matrix logarithmic function,
denoted logm.

* For a matrix S € SE(n),

Log($) = | pI™ Y 14 |

where V.=T+> " ,Q"/(m+ 1)
* Forn =3, Z = logm(€2) has the form

0 —c b |
= c 0 —a
_—b a 0 |
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 Thus, X = Log(S) € se(n) is isomorphic to a vector € RY,
and we can define a bijective mapping @ : se(n) — R?, such that

T 11 -
¢ (X) = [z (V u) } c R“ where z is a vector that collects
the free-varying entries of Z.

‘ 3. Problem Setup |

*Let S, € SE(n) denote an unknown state at time & > 0 that
evolves according to the random walk

Yex)) s k>0

with p(Sp) o« 1, where {e.} is a sequence of i.i.d.Gaussian
random vectors in R? with zero mean and covariance matrix
A

 The nodes record at each instant k the observations

S, = S;._ Exp (cp—

= H,(ILSy) + Wi, k>0,

where r € {1,...,
H(-):
R>(n+1) oy Rrx(nt+l) js g general function, TI € R (1) js
n(n+ 1) x (n+ 1) identity matrix without its bottommost row,

and {W}, ..} is a sequence of i.i.d.samples of a Matrix Gaussian
p.d.f. Nn,n+1<Wk,r‘On,n+1a v, F?")-

» Given the observations {Y; .}, 0 <1 <k, 0 <r < R, our goal is
to recursively estimate S;. in a distributed fashion.

‘ 4. RndEXx Diffusion PF |

* The RndEx Algorithm has two steps: Random Exchange and
Data Assimilation.

R} denotes the r-th node in the network,

*In the Random Exchange step, a node [ exchanges
with another randomly chosen node r its posterior p.d.f.
p(Sk_1|Y14-1;), in which Yj, ;; denotes all observations
assimilated up to instant k.

« Suppose that the posterior p.d.f. is approximated by the
weighted particle set {w,iq_)1 I S]iqzl ha=1,...,0,0Q > 1.

- Before the exchange, node [ compresses the representation
using a Gaussian parametric approximation as follows.

1) Given {w/<<q—>1 I S]iq_)l ;} compute its centroid 5’;{_1774 as

. Q : —1
SEiT =8 em| S uf?) togm (8577, (7 )
q=1

where S;'~ denotes the i-th estimate of the weighted average,
with 5’k<91>l chosen as a random element of the particle set.

2) Then, we evaluate wlgqul,l = (Iogm (Sk L zS/iq—)u)) c R?
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3) The weighted particle set {w/iq—>1 I w]iq_)l 1} is then approximated
by a Gaussian p.d.f.via moment matching, with sample
moments &, ; and X ;.

* At the end of the Random Exchange Step, node r receives
{®)_175;Xk—11Sk—1,} and rebuilds the particle set as

~ q . .
w/(€—>1,l ~N (%-1!%-1,17 Zk—l,l) ,

gli@l,l — Sk—l,l expm (q)_l(i]iqllj))
(g _ 1
We—1,1 7~ Q’

where ¢ € {1,...Q} and N(s|u;®) denotes a (vector)
multivariate Gaussian p.d.f.with argument s, parameterized by
the mean vector i and the covariance matrix ©.

* In the Data Assimilation step, node r samples new particles
from the prior importance function

S\~ p(SplS” ).

and updates the particles’ weights as

(q) (q)
W p X WE 17 H p(Y] u|5m )
uEN (1)

in which N(r) denotes the »—th node closed neighborhood.

* The updated set {w,iqi,sli@} is then a Monte Carlo

A

representation of the posterior p.d.f. p(Si| Yy, Yix_11) =
p(Skl Y1k)-

 State estimates can be computed as the centroid of this particle
set.

‘ 5. Alternative Formulation |

e Alternatively, the state components Q! >1z and ’“’/(<>1l can be
separately compressed:

1) Given {w]iq_)1 I S]i(i_)l 1} compute the centroids

Q
1 (q) PN ()
ﬂ;jzll>—ﬂ<21leXpm Zwk—l,l logm ((Q;Dl l) le,l> :
g=1

¢ (a) ., (q)
~ _ q q
Uk—107 Zwk—l,luk—l,l’

q=1

2) Then, evaluate a:](fz” = ¢ (Iogm (Qg_uﬂliqzl l)) c R%

3) The weighted particle set {wlg;q—)1zv=”3/<<;q—>1z»u§<ql1z} is then

approximated by a Gaussian p.d.f.via moment matching.
* At the end of the Random Exchange Step, node r receives
{1 0p—10;2k-1 Qr—1,) and rebuilds the particle set as
previously.

DISTRIBUTED BAYESIAN TRACKING ON THE SPECIAL EUCLIDEAN GROUP
USING LIE ALGEBRA PARAMETRIC APPROXIMATIONS

‘ 6. Simulation Results |

 We performed a numerical simulation with 300 independent
trials.

*We set n = 3 and ) = 300. In each trial, 200 synthetic data
samples were generated.

* We used a network with five nodes: nodes 1 to 4 are on the
vertices of a square and node 5 is at its center and is connected
to all other nodes.

* The noise covariance matrices were setto ¥, = I and I', =
I-107%/10 with o, equal to 3, 6, 10, 13 and 20 dB for
r =1,...,5, respectively. The driving noise covariance matrix
A;. was set to 0.05 1.

* For comparison, we ran in the same setup three competing
algorithms: 1) bootstrap PFs operating isolatedly in each node
(Isol.-PF), ii) a bootstrap PF with access to all observations
(Joint-PF), and ii) a SE(n)-constrained EKF.

- We assumed that [H,(X)];; = h([X];;), and set h(z) =
tanh(x/B)/6 with g = 1.7.

* The algorithm’s performance was evaluated in terms of
the squared geodesic distance in SE(n), i.e., d*(Sk, Sp) =
logm (2 ) [[5 + [y — ]|

— |sol.-PF
— Joint-PF
—— RndEX-SE-PF
—— RnNdEX-SO-PF
— EKF

101 A

109 -

Mean d2(S,, Sn ;)

1071 A

0 25 50 75 100 125 150 175 200
time (n)

‘ 7. Conclusions |

« This paper described two novel RndEx particle filters for
tracking the state of a dynamic system that evolves on the
Special Euclidean Group.

The first algorithm exchanges Gaussian parametric
approximations built on a vector space isomorphic to se(n).

* The second algorithm directly computes approximations for the

translational information u/(cqlm performing computations on

the Lie algebra of so(n) only for rotation matrices Q,(ﬂl -

« Experimental results show that the proposed methods
perform similarly to a centralized PF-based estimator, greatly
outperforming PFs operating in isolation and an extended
Kalman filter, at increased computational cost.
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