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1. Abstract

端末数による CDSMDS と TCDSMDS の比較Summary: A novel wireless location tracking algorithm, SL-CD-SMDS, is proposed, which is an extension of the CD-SMDS to location tracking problems under the assumption that time series information of distance and angle simultaneously can be 
utilized. Simulation results show that the proposed method significantly outperforms the conventional method, especially when the measurement error is large and/or the information is partially unattainable.

Background:
◼ Internet of things (IoT) applications often rely on networks consisting of large numbers of nodes typically limited in 

computational capabilities. The importance of location information in such a modern system is increasing.
➡ Low-complexity localization algorithms based on multidimensional information aggregated from the nodes

Conventional methods:
◼ Multidimensional scaling (MDS) framework
✓ Classical MDS [1] : Localization method based on edge kernel consisting from the distance estimates between nodes 
✓ Super MDS (SMDS) [2] : Extending the MDS to handle hybrid information (both distance and angle) simultaneously
✓ Complex-domain SMDS (CD-SMDS) [3] : Casting the SMDS onto the complex domain for further improvements

Focus:
◼ The improvement in the CD-SMDS is due to a noise reduction effect of the low-rank truncation via singular value 

decomposition (SVD) of the edge kernel matrix, which in the case of the CD-SMDS algorithm has rank one. 
➡ Further improvement can be expected in systems of larger dimensions.

◼ MDS algorithms are typically limited to snapshot positioning.
➡ Leaving potential for improvement in tracking systems, whereby the temporal dimension is also incorporated.

Proposal:
◼ Recent target devices can easily estimate the distance and direction of their own movement.
◼ Such inertial information between certain time slots obtained from the self-localization (SL) enables us to bridge the 

information at time slot t with the information at the previous discrete time slot t − 1.
➡ Boosting localization accuracy by constructing a larger rank-one edge kernel matrix in the MDS framework,  

encompassing the time series information of both distance and angle. 
Goal:
◼ The efficacy of the proposed method is confirmed via software simulations, and compared with an SL-aware CRLB.

2. Problem description and CD-SMDS algorithm review

◆Anchor nodes (ANs) with their 
locations known a priori

◆Target nodes (TNs) to be 
estimated based on localization

Input data: measurements 
between nodes:
• mutual distances:
• mutual phases:

◆Complex coordinate vector:

◆Complex edge vector:

◆Product of a pair of complex-valued edge:

N: Num. of nodes

: Num. of edges

◆Complex-domain edge kernel matrix:

where

◆CD-SMDS algorithm:

Step 1: Edge kernel construction based on measured values 

Step 2: Edge vector estimation via SVD of edge kernel:

where              is the dominant eigenpair of 

Step 3: Coordinate vector estimation:

Finally, a Procrustes transformation [4] may be required to 
bring the resulting estimate to the same scale, orientation, 
and coordinate origin of the true coordinates x.

➡ Noise reduction effect of the low-rank truncation via SVD

3. Proposal: SL-aided CD-SMDS (SL-CD-SMDS)

The TNs estimated one time ago 
is regarded as the ANs

: Previously estimated data
: Target of estimation 

(current location of TNs)

Taking into account measurements 
from two consecutive time slots by 
seamlessly integrating available 
coordinate information

◆Extended complex coordinate vector:

Used as ANs at time slot t TNs at time slot t

◆Corresponding extended complex edge vector:

ANs to ANs ANs to TNs TNs to TNs 

Between        and Between        and 

UnmeasurableMeasurable

SL

Measurements between              and         cannot be obtained 
as the nodes are moving…
➡ Only the part corresponding to their own movements that 
can be informed by SL can be constructed, enabling to bridge 
the information of different discrete time slots!

4. Simulation results

Fig. 1: Localization accuracies v.s. ranging errors Fig. 3: More practical settingFig. 2: Average MSE v.s. ranging errors

◼ The simulation is performed with the test area of 10 m-by-10 m equipped with 4 ANs, one 
at each corner and TNs randomly placed in the plane.

◼ Performance is assessed by the average error between the true position of the target and 
the estimated value. The TNs follow independent random trajectories generated 
accordingly to a first-order autoregressive (AR) model.

Fig. 1 compares accuracy of the localization as a function of the standard deviations of 
distance estimates, where three different levels of Tikhonov-distributed angle estimation 
errors are considered.

Fig. 2 shows the MSE performances as a function of the standard deviations of Gamma-
distributed distance estimates. 

Fig. 3 shows the localization performances for a case where 40% of the entries in the 
kernels are randomly erased. 
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