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ABSTRACT

We propose a wireless localization algorithm based on
complex-domain super multidimensional scaling (CD-SMDS)
augmented with a self-localization (SL) component, whereby
each target tracks its own motion by incorporating bearing in-
formation, obtained e.g., from integrated inertial sensors. The
proposed method improves localization accuracy by simul-
taneously using the time series information of distance and
angle associated to the SL information in order to construct
the SMDS rank-one edge kernel matrix, maximizing the noise
reduction effect of the low-rank truncation via singular value
decomposition (SVD). The efficacy of the proposed method
over the original CD-SMDS is confirmed via software simu-
lations, and compared with an SL-aware Cramér-Rao lower
bound (CRLB).

Index Terms— Wireless indoor localization, multidimen-
sional scaling, time series information

1. INTRODUCTION

With the penetration of wireless communication networks
into new and diverse areas of applications [1, 2, 3], the
importance of location information in modern systems is ap-
proaching that of communication payload data. In particular,
internet of things (IoT) applications [4] often rely on net-
works consisting of large numbers of nodes typically limited
in computational capabilities [5, 6], such that low-complexity
localization algorithms based on multidimensional informa-
tion aggregated from the nodes are of interest.

Within this context, we investigate an improved low-
complexity algorithm based on the isometric embedding
technique, also known as multidimensional scaling (MDS)
[7, 8], which possesses a well-determined computational
complexity, unlike the approaches based on Bayesian [9] and
convex optimization [10]. To name a few recent MDS-based
localization algorithms, the super MDS (SMDS) framework
of [11, 12] can handle hybrid information (i.e., both distance
and angle) simultaneously, and was shown to significantly
outperform the classic MDS technique even under uncertain-
ties in the angle domain in the order of +35°. In [13], a
complex-domain SMDS (CD-SMDS) was proposed which
achieves further complexity reduction and accuracy improve-
ment via the elimination of redundancy resulting from casting
the latter SMDS algorithm onto the complex domain.

The improvement of CD-SMDS over real-valued SMDS
is due to a noise reduction effect of the low-rank truncation
via singular value decomposition (SVD) of the edge kernel
matrix, which in the case of the CD-SMDS algorithm has rank
one, which suggests that further improvement can be expected
in systems of larger dimensions. Indeed, MDS algorithms
are typically limited to snapshot positioning (.e., location in-
ference based on observations from a single time slot), leav-
ing potential for improvement in the context of tracking sys-
tems, whereby the temporal dimension is also incorporated.
To this end, we further extend the original CD-SMDS frame-
work such that further noise reduction effects can be obtained
by exploiting time series information.

With the recent development of multifunctional sensor de-
vices, target devices can easily estimate the distance and di-
rection of their own movement using a set of low-cost iner-
tial sensors [14, 15]. Such inertial information between cer-
tain time slots obtained from the self-localization (SL) en-
ables us to bridge the information at time slot ¢ with the infor-
mation at the previous discrete time slot (¢.e., ¢ — 1), and to
boost localization accuracy by constructing a larger rank-one
edge kernel matrix in the MDS framework, encompassing the
time series information of both distance and angle. In addi-
tion, the algorithm design along with the CD-SMDS frame-
work allows us to analyze the achievable performance of the
proposed method in terms of the Cramér-Rao lower bound
(CRLB), taking into account the error of SL.

Notation: Vectors and matrices are denoted by lower-
and upper-case bold-face letters, respectively. The conjugate,
transpose, and conjugate transpose operators are denoted by
T and -H. Imaginary units are denoted by j = +/—1,
real numbers of size a x b are denoted by R?*® and complex
numbers by C**?. The a x a square identity matrix is denoted
by I,. The a x b zero matrix is denoted by 0, «p and the a X b
one matrix is denoted by 1,x,. diag(a) denotes a diagonal
matrix whose main diagonal is a. || - || denotes the Euclidean
norm. (-,-) and |- X -| denote the inner product and the outer
product, respectively. det (A) denotes the determinant of A.

2. FULL CD-SMDS ALGORITHM

Consider a localization network in a 2-dimensional Euclidean
space containing N nodes, out of which N4 nodes are re-
ferred to as anchor nodes (ANs) with their locations known
a priori, while the location of the remaining N7 £ N — Ny
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Fig. 1. Illustration of vector and complex representation of
vertices and edges of a network

nodes, hereafter referred to as target nodes (TNs), is to be es-
timated based on measurements of their mutual distances and
angles [12]. Let the coordinates of the ¢-th node be denoted
by the column vector &; = [ag,, by,]’ € R2%L, such that the
coordinates of all nodes in the network can be arranged in the
coordinate matrix

X 2z, xy] € RV*2 (1)

Consider the set of unique index pairs M 2
{(1,2),---,(1,N),(2,3),--- ,(N — 1, N)} in an ascending
order, such that each pair m € M corresponds to an edge
vector v,,, in the form of

J >, @)
where the Euclidean distance between the corresponding pair
is simply given by d,,, 2 ||V.n]|-

As shown in [13], the full CD-SMDS algorithm proposed
to convert the above expressions to its complex counterpart;
in other words, the coordinate vector ; € R2*! of a generic

node ¢ in the network can be alternatively expressed by the
complex representation x; € R?, i.e.,

Um :mi—wj,

Ti 2 [0, b, <= 7 2 ag, + jba, 3)
and the complex coordinate vector is given by
,an]" e CV, @

Similarly, the edge vector v,,, between any two nodes x;
and x; can be represented as

AN
x =, ..

Uy = Um = o, +jbov,,, J>1, (®)]

where ay,, £ az, — g, by, = ba, — bg,, and the amplitude
of vy, is given by |vy,| £ dy, = (/a2 + 02 .

From the above, the complex edge matrix consisting of
the collection of all M £ (];7) = N(N — 1)/2 edge vectors
can be concisely written as

v 2 [(x1—2),(x1 —x3), ... (a1 —aN)]
= [v1,...,om] =C-x e CM*!, (6)
where
In_1x1 —In_y
ca On_2x1 | Inv—2x1 —In_» c RMXN.
O1xn—2 1]-1

@)

Using the fact that the inner and outer products between
the edge vectors v,,, and v,, are respectively given by
(Vs Vp) = G, Go,, + bo,, by, = dindy, cOS Oy, (82)

[V X Vp| = G, by, — Qv by, = dpd,sinbd,,,, (8b)

the product of a pair of edge vectors v, and v, with m # p
is given by

U - Uy = dmdy, (COS O + jSin O,,p) = dmdpejemp, 9)
where 0,,,, is the difference in phase.

Based on the above, the complex-domain edge kernel ma-
trix K that includes all distance and phase difference infor-
mation can be expressed as [13]
eifn eifim

el el

Kév-vH:diag(d)~[ ]-diag(d),

wheredé [dl,...,d]w]-r. (10)

From (10), it is evident that an edge kernel matrix K of
rank 1 can be obtained from distance and phase measurements
cim and émp, and therefore the estimate of v is given by

b =V, (1)

where (A, ) is the dominant eigenpair of K.
Finally, the estimate coordinate vector & can be recovered
from © by inverting the relationship in equation (6), i.e.,

zA | | Ing | Ongxne - TA
][] ] @

xr

where the vector consisting of the complex coordinates of
ANs zp € CNax1 is used to circumvent the rank-deficient
problem of the matrix C. Furthermore, a Procrustes transfor-
mation [16] may be required to bring the resulting estimate
& to the same scale, orientation, and coordinate origin of the
true coordinates x. Besides the above concise description of
CD-SMDS, we refer the reader to [12] for more detailed in-
formation.

3. FULL SL-CD-SMDS ALGORITHM

Extending snapshot-based CD-SMDS to a location tracking
algorithm with multiple targets [17], this section presents
the proposed SL-aided CD-SMDS (SL-CD-SMDS) algorithm
that takes into account measurements from two consecutive
time slots by seamlessly integrating available coordinate in-
formation. To that end, let the part of edge vector v in equa-
tion (6) corresponding to edges between AN, the part corre-
sponding to edges between ANs and TNs, and the part cor-
responding to edges between TNs be vaa, var, and vpr,
respectively. Defining the vector consisting of the complex

coordinates of TNs at discrete time slot ¢ as m(Tt) € CNrx1,
the extended complex coordinate vector including the coordi-
nates of TNs at ¢ — 1 is defined as

]
@ 2ol (@) (@)T] ecta3)

(t=1)

where 1. "’ is a location estimate from SL and therefore

known at time ¢ such that a:%f_l)

position errors and uncertainties.

can be seen as ANs with



With that in mind, the complex edge vector between ANs
can be expressed as

vap = Cap - @', (14)

where Cpp € RMX(N+NT) ig defined as

In_1x1 —In_y ON_1xNp
Cuns On_2x1 | In—2x1 —In_» On_ox Ny
AA=
O1xn—2 L] =1] Oixng
(15)

Unlike CD-SMDS, the complex edge vector vaT is now
composed of two different edge vectors, i.e., 1) the edges be-
tween x o and ar:(Tt), and 2) the edges between zc(Tt_l) and :c(Tt).
For the edge kernel matrix corresponding to 2), only the part
corresponding to their own movements that can be informed
by SL can be constructed. These edges bridge the information
of different discrete time slots and provides an improvement
over the original CD-SMDS based on the snapshot approach.
Accordingly, var is given by

var = Car - @, (16)

where Cap € RNT(Na+1)x(N+N1) 5 defined as

Car =
[ 1npxa OnpxN—1 —In, |
Onpx1 | Inpx1 ONpxN—2 —In,
. S -A7
ONpxNa—1 Inyx1 | Onpxny | —INg
i ONyxNA In, | —Ing |

Similarly, the complex edge vector corresponding to the
TNs (i.e., v77) is given by

vry = Crr - @, (18)

where Cpp € RVT(N1—1)/2x(N+N1) 5 defined as

Onr—1xN | Inp—1x1 —Inp—1
o | ONp—2xN | Onp—ox1 | INp—ox1 | —INp—2
Crr =
O1xn 015 Np—2 1] -1

19)
Given the complex edge vectors in equations (14), (16),
and (18), a new complex-domain edge kernel matrix that in-
tegrates the time series information of distance and angle can
be expressed as
K' 24 o™, (20)
where

T M’ x1
"&£ [viy VAT vip] =C'-a’ € CMY (2la)

C'2[Cl, Chy Cly" e RM>(VEND - (ap)

v

and M’ & (NENT) — Np(Np — 1).
With the extended edge kernel matrix K’ given in (20),

an estimate of the coordinates can be obtained by following
the CD-SMDS procedure as in (11) and (12).

Algorithm 1 Full SL-CD-SMDS (¢ > 2)
Input: } B
- Measurements of distance and angles: d,, and 0,y

- Measurements d~m and ém from SL

Steps:

- Estimate the complex edge vector v 4 4 using (14)

- Use Jm, émp, ém, and v 5 4 to construct K’ asin (20)
- Compute the largest eigenpair (A, u) of K'.

- Estimate the complex edge vector ¥ using (11)

- Compute &' by inversion using (21a)

- Map &' back to X and apply Procrustes if needed

Since the size of the kernel matrix increases from M x M
of CD-SMDS to M’ x M’, localization performance improve-
ments can be expected due to further noise suppression via the
low-rank truncation performed in (11). For the sake of com-
pleteness, we conclude this section with a pseudo-code of the
SL-CD-SMDS algorithm, which is offered in Algorithm 1.

Thecomputationalcomplexity of SL-CD-SMDS is
O(M"?); however, it is not expected to lead to severe delays,
since efficient subspace tracking algorithms can reduce the
complexity required for SVD at each time slot [18].

4. SIMULATION RESULT

Computer simulations were conducted to validate the perfor-
mance of the proposed SL-CD-SMDS algorithm. The sim-
ulation is performed with the test area of 10 [m]-by-10 [m]
equipped with 4 AN, one at each corner, and populated with
Nt TNs located randomly in its interior with = and y co-
ordinates following a uniform distribution. The TNs follow
independent random trajectories generated accordingly to a
first-order autoregressive (AR) model [17]. Distance mea-
surements are modeled as gamma-distributed random vari-
ables [19] with the mean given by the true distance d and a
standard deviation o4. The probability density function (PDF)
of measured distances d associated with d is given by

p(da,B) = (8°T(a))~"-dD.e¥8 (22

where o £ d? /o2 and 8 £ 02/d.
In turn, angle measurement errors dy are assumed to be
Tikhonov-distributed [20, 21]. The PDF of measured angles

0 = 0 + 6, associated with a true angle 6 is given by

p (5; 0, p) = (27Iy(p)) " - exp [p cos(f — 5)} , (23)

where the concentration parameter p > 0 is inversely pro-
portional to the angular error variance. Due to the non-linear
relationship between angular error variances and p, the in-
fluence of angular errors by the quantity ey, defined as the
bounding angle of the 90" centered percentile, is captured by

0B
= 9B’ / e (0, p)dé = 0.9. (24)
_GB

It is assumed that SL is also subject to measurement errors
by equations (22)-(24). Estimation errors are measured by
the Frobenius norm of the difference between the estimates
X and true TNSs’ positions X, i.e. mean square error (MSE),
&= N% |X — X||, where || - ||¢ denotes the Frobenius norm.
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Fig. 2 compares the localization accuracy of the CD-
SMDS and SL-CD-SMDS algorithms for Nt = 6 as a func-
tion of the standard deviations of Gamma-distributed dis-
tance estimates, where three different levels of Tikhonov-
distributed angle estimation errors are considered. It is found
that the proposed method outperforms the original CD-SMDS

algorithm over a wide range of ranging errors due to the im-
proved noise suppression effect resulting from the extended
edge kernel matrix. One can also perceive that the gain in
comparison with CD-SMDS increases as the angle estimation
error level grows, the reason for which can be attributed to the
enhanced noise suppression of the proposed SL-CD-SMDS.

Fig. 3 shows the MSE performances for ey = 10° and
Nt = 6 as a function of the standard deviations of Gamma-
distributed distance estimates. The proposed method signifi-
cantly outperforms the CD-SMDS algorithm. To clarify the
performance limit, the CRLB [22] is also presented, which is
computed based on the measurement method and the distribu-
tion of measurement errors. As described above, the distance
errors follow the gamma distribution and the angle errors fol-
low the Tikhonov distribution. Distance measurements are
performed by time of arrival (ToA) [23] for both vaT and
vrT, and angle measurements are performed by angle of ar-
rival (AoA) [24] for var and by angle difference of arrival
(ADoA) [25] for vrr. Under the assumption that the uncer-
tainty of a:slf Vs relatively small compared to the ranging
errors, the CRLB of SL-CD-SMDS can be derived using the
analytical framework presented in [26], taking into account
the estimation errors at ¢t — 1. The lower bound of the pro-
posed method is found to be below the conventional one.

Finally, we now turn our attention to more practical cases
where distance and angle information between nodes was par-
tially unattainable, e.g., due to non-line of sight (NLoS) en-
vironments between nodes. Fig. 4 shows the performances
of CD-SMDS and SL-CD-SMDS for a case where 40% of
the entries in the kernels K and K’ are randomly erased. To
obtain the final results shown in the plots, the randomly (but
identically) erased kernels are first complemented using the
low-rank matrix completion method [27] before running the
localization algorithms, and averaged over multiple indepen-
dent erasure realizations. While observation incompleteness
clearly affects the performance from a comparison with Fig.
2, the proposed SL-CD-SMDS is more robust against erasure
than the original CD-SMDS, which is again explained by in-
formation complemented by a larger dimension size of K’
and the improved noise suppression effect.

5. CONCLUSION

In this paper, we proposed a novel wireless location tracking
algorithm dubbed the SL-CD-SMDS, which is an extension
of the state-of-the-art CD-SMDS to location tracking prob-
lems under the assumption that time series information of dis-
tance and angle simultaneously can be utilized. The resulting
high-dimensional edge kernel matrix effectively separates the
signal and noise spaces, maximizing the benefit of noise re-
duction performed by the low-rank truncation via SVD. Simu-
lation results show that the proposed method significantly out-
performs the conventional method, especially when the mea-
surement error is large. In addition, the CRLB of the proposed
method is presented to clarify the performance limit.
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