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Spatially dependent PDEs
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The PDE (wave equation) is spatially dependent at M locations
due to various phase speeds:
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Spatially dependent PDEs
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The PDE (wave equation) is spatially dependent at M locations
due to various phase speeds and attenuation factors:
For the 1-dimensional single frequency wave solution:
U= er_almRe(ei(k"’_wt))

the attenuating wave equation links the attenuation factor in the PDE «
with the attenuation in the solution a’ in Np/m by:

® Uy=Uzc=1m/s,a=0
® Uy =—0.07U¢ + 4Uzz, ¢ =2 m/s, o = 0.07 a = \/;d?(\/az + w? — w)




ICASSP 2023 SD-PINN R. Liu and P. Gerstoft Theory

Network structure — Fully connected neural network (FCN)

The network is parameterized by 8 (wights and bias in all layers):

Nety(z,t) = WE(...(Watanh(WT [ﬂ +by)+bs)...)+by

The PDE is parameterized by 1 .
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Estimations are computed by automatic differentiation:
() = Ouom, 1) = 2N 1)
. : 2 2 . T=Tm,t=t;
Functional loss - (Uet)dn = —am(Ue)in + cm(Usa )i o 9 ONety(a,1)
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An example for automatic differentiation:
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T 9x 0A ox
= (1—tamh2 A) w1

8(6’7) 8((1—tanh2A) 'wl)

~ 52)
Usa = or ox
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" dtanh A 0A Ox
= —2w} tanh A(1 — tanh® A)

Advantage on noise-robustness:

The automatic differentiation is an analytical computation parameterized by neural network parameters (in this example, wy
and w,). The neural network parameters are updated not only to make #i simulate noisy measurements, but also to ensure
that the physical laws are obeyed (via lossy). The loss¢ encourages the network parameters to ignore the influence from
measurement noise, which does not obey the assumed PDE.
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Sign loss-

Smoothness loss-

We incorporate the knowledge of sign information.
E.g., for ‘ , ,
(Utt)zn = _am(Ul)-Zn + cfn(Ul‘l‘)zn
the coefficient c? = 0 must hold since c is for the phase speed of the wave,
and —a < 0 for the attenuation must hold for a system without input external energy.

Theory

ReLU(x)

losssi()\) . Z Z ReLU(—sign()\mk)ka) =05L

™m k

ReLU(-x)

For here losssi = » ReLU(+(—@m)) + »_ ReLU(—(+25n))

m m

K M-1
lOSSsm()\) = Z Z ()\mk- + A(m-{-l)k - 2>‘(m+0.5)k)2
m=1

k=1

We recovers the PDE coefficients from both true positions and interpolated positions at the
middle of 2 neighboring true positions.

Estimated coefficients at true positions: A, for integers m.
Estimated coefficients at interpolated places:  A,,4¢.5 for integers m.

The estimated coefficients at the middle of the 2 true locations should be near the average of
the estimated coefficients at these true locations.

0.8 1
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Boundary loss- We assume the PDE coefficients at spatial boundaries known, and use it to quickly
obtain the estimated PDE coefficients at the boundaries by minimizing:

k=1

[lossb = Z((Xlk — )\uc)z + (:\\Mk - )\Mk)2)}

K
Revised functional loss - losseN) = > S (@ — O Xurdl, )’
meElm jEIt k=1
= > D Oy + an e — n(Usz)in)? | for — (Un)l, = —am(Us), + &2, (Usa ),

m€Elm jEIt

which incorporates the interpolated points.



ICASSP 2023 SD-PINN R. Liu and P. Gerstoft Experiments

Datasets: ,
Configurations:

_ B - - - 23]A 195 At .
At =15 Az =2m Region of interest (ROI):  [3,23]Az  [5,195] Use Adam optimizer.
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Results
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SD-PINN FD-LSQ TVR-FD-LSQ
Wave Eq. w/o attenuation | ¢ | 1.25 x 107% | 7.87 x 10" 1.49
Wave Ea. w. attenuation —a | 1.80x107° | 5.31 x 10~ ¢ 1.84 x 10~
4w & [541x10° | 230x10 ' | 2.52x 10 "

The MSEs between the true PDE coefficients and the recovered ones
from various methods.

Experiments

Two baselines:

FD-LSQ: First compute the PDE terms by
Finite Difference, then fix the term Uy as
the left-hand side, and finally compute the
PDE coefficients for the right-hand side
terms (Uy, and U;) by least squares
regression.

TVR-FD-LSQ: First compute the PDE
terms by Total-Variation Regularized
Finite Difference, then fix the term Uy as
the left-hand side, and finally compute the
PDE coefficients for the right-hand side
terms (Uy, and U;) by least squares
regression.
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Summary:

1, The proposed SD-PINN can recover spatially-dependent PDE coefficients.

2, The sign information of the PDE coefficients is exploited to help training the SD-PINN.

3, The SD-PINN is robust to noise. Because it uses the neural network parameters to compute
the PDE terms via automatic differentiation, and the neural network parameters are updated
not only according to the noisy measurements, but also constrained by physical laws.

4, The noise-robustness of the SD-PINN is verified by multiple numerical experiments.

Key reference:

M. Raissi, P. Perdikaris, and G. E. Karniadakis, “Physics-informed neural networks: A deep learning

framework for solving forward and inverse problems involving nonlinear partial differential equations,”
J. Comput. Phys., vol. 378, pp. 686-707, 2019.
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Thank You!
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