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Spatially dependent PDEs

Wave equation without attenuating at 𝑀 locations:

The PDE (wave equation) is spatially dependent at 𝑀 locations 
due to various phase speeds:

Background
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Spatially dependent PDEs

Wave equation with attenuating at 𝑀 locations:

The PDE (wave equation) is spatially dependent at 𝑀 locations 
due to various phase speeds and attenuation factors:

Background
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For the 1-dimensional single frequency wave solution:

the attenuating wave equation links the attenuation factor in the PDE 𝛼
with the attenuation in the solution 𝛼! in Np/m by:



Network structure – Fully connected neural network (FCN)

Loss functions -

Data loss -

Functional loss -

The network is parameterized by 𝜃 (wights and bias in all layers): 

The PDE is parameterized by 𝜆 .

For the PDE:

we have

Estimations are computed by automatic differentiation:

Theory

Overall -
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tanh

An example for automatic differentiation:

𝑥

𝑡
+

𝑤#

𝑤$
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Advantage on noise-robustness:
The automatic differentiation is an analytical computation parameterized by neural network parameters (in this example, 𝑤#
and 𝑤$). The neural network parameters are updated not only to make #𝑢 simulate noisy measurements, but also to ensure 
that the physical laws are obeyed (via 𝑙𝑜𝑠𝑠%). The 𝑙𝑜𝑠𝑠% encourages the network parameters to ignore the influence from 
measurement noise, which does not obey the assumed PDE.

Theory



Sign loss- We incorporate the knowledge of sign information.
E.g., for

the coefficient 𝑐$ ≥ 0 must hold since 𝑐 is for the phase speed of the wave, 
and −𝛼 ≤ 0 for the attenuation must hold for a system without input external energy.

For here

Smoothness loss-

Theory

We recovers the PDE coefficients from both true positions and interpolated positions at the 
middle of 2 neighboring true positions.

Estimated coefficients at true positions:              .𝜆& for integers 𝑚.  
Estimated coefficients at interpolated places:     .𝜆&'(.* for integers 𝑚. 

The estimated coefficients at the middle of the 2 true locations should be near the average of 
the estimated coefficients at these true locations.
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Theory

Boundary loss- We assume the PDE coefficients at spatial boundaries known, and use it to quickly 
obtain the estimated PDE coefficients at the boundaries by minimizing:

Revised functional loss -

for

which incorporates the interpolated points.
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Experiments
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SNR = 30 dB

SNR = 20 dB

Datasets:

Non-attenuating waves

Attenuating waves

Region of interest (ROI): 
Configurations:

FCN has 9 layers.

Equally interpolate 3 points between 2 
neighboring true time steps. 

FCN has 5 layers.

Interpolate 1 point at the middle of 2 
neighboring true time steps. 

Use Adam optimizer.



Experiments

The MSEs between the true PDE coefficients and the recovered ones 
from various methods.

Two baselines:

FD-LSQ: First compute the PDE terms by
Finite Difference, then fix the term 𝑈"" as
the left-hand side, and finally compute the
PDE coefficients for the right-hand side
terms (𝑈## and 𝑈" ) by least squares
regression.

TVR-FD-LSQ: First compute the PDE
terms by Total-Variation Regularized
Finite Difference, then fix the term 𝑈"" as
the left-hand side, and finally compute the
PDE coefficients for the right-hand side
terms (𝑈## and 𝑈" ) by least squares
regression.
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SNR = 30 dB

SNR = 20 dB

Results
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Summary:

1, The proposed SD-PINN can recover spatially-dependent PDE coefficients.

3, The SD-PINN is robust to noise. Because it uses the neural network parameters to compute 
~~the PDE terms via automatic differentiation, and the neural network parameters are updated 
~~not only according to the noisy measurements, but also constrained by physical laws.

4, The noise-robustness of the SD-PINN is verified by multiple numerical experiments.

2, The sign information of the PDE coefficients is exploited to help training the SD-PINN.

Key reference:

M. Raissi, P. Perdikaris, and G. E. Karniadakis, “Physics-informed neural networks: A deep learning 
framework for solving forward and inverse problems involving nonlinear partial differential equations,” 
J. Comput. Phys., vol. 378, pp. 686–707, 2019.

Summary



Thank You!
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