

On Negative Sampling for Contrastive Audio-Text Retrieval

Huang Xie, Okko Räsänen, Tuomas Virtanen Tampere University

presented by Huang Xie

IEEE ICASSP 2023

Motivation

Audio-text retrieval

- > Retrieves audio or text instances relevant to a given query from the other modality.
 - $\checkmark\,$ E.g., audio retrieval with text queries
 - ✓ Real-world applications such as search engines

Contrastive audio-text retrieval

> Tackles audio-text retrieval with contrastive learning.

Negative sampling (NS)

- > Selects informative negative samples for training.
 - ✓ Most negatives are easy to discriminate.
 - ✓ Some negatives are even counterproductive.

Contrastive Learning Framework

Score-based Negative Sampling

Sample hardness

- > Indicates how difficult a negative sample can be distinguished from positive ones.
 - $\checkmark\,$ The more difficult, the more informative.
 - ✓ E.g., easy, hard, semi-hard negatives ^[1].

IEEE ICASSP 2023 [1] F. Schroff, D. Kalenichenko, and J. Philbin, "FaceNet: A unified embedding for face recognition and clustering," in CVPR, 2015, pp. 815-823.

Score-based Negative Sampling

Score-based NS

- Given a positive audio-text pair, measure sample hardness with sample similarity scores on the positive audio/text.
 - ✓ Cross-modality scores (e.g., semi-hard NS, hard NS)
 - ✓ Within-modality scores (e.g., easy NS, hard NS)

Basic Negative Sampling

Random NS

- > Selects negative samples at random.
- Commonly used as the default NS method.

Full-mini-batch NS

- > Selects all negative samples within a mini-batch.
- > Has more negative samples contributing to training.

Experiments – Contrastive Learning Objective

Triplet loss

$$\mathcal{L} = \frac{1}{N} \sum_{i=1}^{N} \left[\max(0, S_{neg_text} - S_{pos} + 1) + \max(0, S_{neg_audio} - S_{pos} + 1) \right]$$

➢ N: batch size

Experiments – Audio Encoder

Convolutional recurrent neural network (CRNN)^[2]

Five convolutional blocks + one bidirectional gated recurrent unit (BiGRU)

Input

➢ 64-dimensional log-mel energies (40 ms frame shift)

Output

- > 300-dimensional frame-level acoustic embeddings
- L2-normalized

Experiments – Text Encoder

Word2Vec ^[3]

- > Two-layer fully-connected neural network with the skip-gram architecture
- Pre-trained with Google News dataset (about 100 billion words)

Output

- > 300-dimensional word embeddings
- L2-normalized

Experiments – Text & Audio Similarities

Audio-text similarity ^[4]

> Averaged dot products of acoustic embeddings and word embeddings

Audio-audio similarity

Averaged dot products of acoustic embeddings

Text-text similarity

Averaged dot products of word embeddings

Experiments – Dataset

Clotho dataset ^[5]

- > 5,929 audio clips with a duration of 15-30 seconds
- > 29,645 human written captions with a length of 8-20 words
 - $\checkmark\,$ Five captions for each clip
- Data splits
 - \checkmark development \rightarrow training
 - ✓ validation
- \rightarrow validation
- \checkmark evaluation \rightarrow evaluation

Data Split	#Clips	#Captions
development	3,839	19,195
validation	1,045	5,225
evaluation	1,045	5,225

Experiments – Text-to-Audio Retrieval

Evaluation task setup

- \succ Given a text as the query, retrieve its paired audio from 1,045 candidates.
 - ✓ One positive + 1,044 negatives

Evaluation metrics

- Mean average precision (mAP)
- ➢ Recall at rank K (R@5, R@10)

Results

- Vary dramatically
- Best with semi-hard negatives

Negative Sampling (NS)		mAP	R@5	R@10
Basic	Random NS	0.057	0.074	0.129
	Full-mini-batch NS	0.054	0.064	0.120
Score-based	Cross-modality Semi-hard NS	0.121	0.171	0.274
	Cross-modality Hard NS	0.007	0.005	0.010
	Text-based NS (hard)	0.065	0.083	0.148
	Text-based NS (easy)	0.028	0.033	0.057
	Audio-based NS (hard)	0.034	0.037	0.072
	Audio-based NS (easy)	0.011	0.005	0.010

Experiments – Audio-to-Text Retrieval

Evaluation task setup

- ➤ Given an audio clip as the query, retrieve its paired captions from 5,225 candidates.
 - ✓ Five positives + 5,220 negatives

Evaluation metrics

- Mean average precision (mAP)
- Recall at rank K (R@5, R@10)

Results

- Vary dramatically
- Best with semi-hard negatives

Negative Sampling (NS)		mAP	R@5	R@10
Basic	Random NS	0.030	0.018	0.036
	Full-mini-batch NS	0.030	0.019	0.037
Score-based	Cross-modality Semi-hard NS	0.046	0.030	0.058
	Cross-modality Hard NS	0.004	0.001	0.002
	Text-based NS (hard)	0.027	0.017	0.031
	Text-based NS (easy)	0.018	0.011	0.021
	Audio-based NS (hard)	0.030	0.018	0.035
	Audio-based NS (easy)	0.005	0.003	0.005

Conclusion

We explored score-based negative sampling by employing

- Cross-modality similarity scores
 - ✓ i.e., audio-text.
- Within-modality similarity scores
 - ✓ i.e., text-based, audio-based.

We evaluated eight negative sampling methods for contrastive audio-text retrieval.

- Six score-based methods
- Two basic methods

Thank You For Watching!

– Huang Xie