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ABSTRACT

Lack of audio-video synchronization is a common problem dur-
ing television broadcasts and video conferencing, leading to an un-
satisfactory viewing experience. A widely accepted paradigm is to
create an error detection mechanism that identifies the cases when
audio is leading or lagging. We propose ModEFormer, which in-
dependently extracts audio and video embeddings using modality-
specific transformers. Different from the other transformer-based ap-
proaches, ModEFormer preserves the modality of the input streams
which allows us to use a larger batch size with more negative au-
dio samples for contrastive learning. Further, we propose a trade-
off between the number of negative samples and number of unique
samples in a batch to significantly exceed the performance of previ-
ous methods. Experimental results show that ModEFormer achieves
state-of-the-art performance, 94.5% for LRS2 and 90.9% for LRS3.
Finally, we demonstrate how ModEFormer can be used for offset
detection for test clips.

Index Terms— Contrastive learning, audio-video synchroniza-
tion, transformers, negative sampling

1. INTRODUCTION AND RELATED WORK

Out-of-sync between audio and video is a critical problem that de-
grades user experience. This problem occurs quite often due to
stochastic uncertainty from physical recording equipment or various
network issues. This is more obvious in talking face videos where
the lip motion does not align with the progression of audio. Having a
lip-audio sync detector is of vital importance to measure and correct
offsets between the audio and video streams.

Although traditional methods like time warping have proven to
be quite useful in detecting this error, these are human-dependent
and seem intractable with the amount of digital media in today’s
world. Some of the earliest works include Hershey et al. [5], which
calculates the mutual information or “synchrony” and FaceSync
[6], which uses the Pearson’s coefficient for audio-video correla-
tion. Other works like Morishima et al. [7] and Lewis et al. [8] use
phoneme-viseme matching to ensure audio-video sync.

With the advancement of artificial intelligence, various sync de-
tection techniques have been developed. SyncNet [1] is the first to
use convolutional neural networks to extract audio and video embed-
dings and train them with a contrastive learning objective. Another
following work that builds further on this is Perfect Match (PM) [2],
which introduces the idea of multi-way matching of an audio embed-
ding with multiple video embeddings by using a multi-way cross-
entropy loss. They propose that this multi-way matching is benefi-
cial during contrastive learning since it takes into account contextual
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Fig. 1. Comparison of different architectures for audio-video sync
detection. SyncNet [1] and PM [2] encode audio and video inputs
independently and compute a sync score by measuring cosine simi-
larity between them. AVST [3] and VocaLiST [4] adopt transform-
ers to predict a sync score directly. They combine audio and vi-
sual features inside the cross-modal transformers. Our model has a
modality-preserving architecture with transformers, which encodes
visual and audio signals independently. By keeping the modality, we
enable effective contrastive learning with either a large batch size or
more negative examples.

information in an input sequence during training. Further, Prajwal
et al. [9] presents a slightly different version of SyncNet by using
residual convolution neural network (CNN) encoders and a cosine
similarity-based loss but limits it to the binary matching of embed-
dings.

Transformers [10] have emerged as one of the leading models
for feature encoding. In audio-video synchronization, transformers
have shown significant improvement over CNN-based architectures.
Chen et al. [3] introduced AVST or Audio-Video Sync Transformer
that provides a generalized solution for synchronization over vari-
ous sound classes found in in-the-wild videos. They propose a sync
transformer module that helps in learning cross-modal relations be-
tween the two modalities. Another recent work, VocaLiST [4] offers
an improvement over AVST by using multiple such sync transform-
ers learning audio-to-video, video-to-audio, and hybrid correlations.
Although the above modifications show improvement in audio-video
synchronization, they do not explore sampling strategies for con-
trastive learning.

In this work, we propose ModEFormer, which is a transformer-
based model that extracts audio and video embeddings. We train our
model to yield embeddings with high cosine similarities only when
the input audio and video are in-sync. Unlike previous transformer-
based algorithms [3, 4] that blend modalities inside their models,



our method keeps separate audio and visual modalities, and thus en-
ables contrastive learning with a large number of negative examples.
Fig. 1 visually compares our ModEFormer’s architecture to the ex-
isting methods [3, 4, 1, 2]. We conduct experiments to discover the
most beneficial method of composing negative examples for con-
trastive learning of audio-video sync detection. We demonstrate that
our method reaches state-of-the-art performance on both LRS2 [11]
and LRS3 [12] datasets. The key contributions of this work are

• Building modality-preserving transformer encoders that en-
able contrastive learning with larger number of negative ex-
amples.

• Propose best trade-off between the number of negative ex-
amples and number of unique samples in a batch for optimal
training of audio-video out-sync detection.

• Remarkable performance on LRS2 and LRS3 datasets

2. METHODOLOGY

We train our model, ModEFormer, to predict a sync score between
a facial video and an audio clip. Our model accepts five consecutive
frames (Tv = 5) of a lip region as the video input v. We define the lip
region as a lower-half of a facial video at 48×96 resolution (H = 48
and W = 96) by following the conventional work [4]. We convert a
given audio, whose length is corresponding to the five video frames,
into a melspectrogram with 80 mel frequencies (M = 80). We then
sample 3.2 audio frames for each video frame, and thus the input
audio m’s shape is M × Ta, where Ta = 3.2 × Tv = 16. We train
our model to predict a sync score between these video and audio
inputs.

2.1. Architecture of ModEFormer

We visualize the architecture of ModEFormer in Fig. 2. ModE-
Former consists of CNN encoders E and transformer encoders P
for both audio and video modalities. We design our model using
modality-specific transformers and show in Sec 3.1 that they outper-
form previous transformer and CNN-based sync detectors [4, 3, 1, 2]
due to their enhanced ability of negative sampling and contrastive
learning. While the CNN encoders extract lower-level representa-
tions1, we obtain condensed modality-specific embeddings from the
transformer encoders for the audio and video inputs.
Lower-level representation using CNN encoders.

For the audio CNN encoder Ea, we use an architecture simi-
lar to ResNet18 [14]. We replace the first convolution layer to in-
put a 1-channel tensor. We also adjust strides of convolutions to
encode an audio input m ∈ RM×Ta to Ea(m) ∈ R512×Ta fea-
tures. For the video branch, we obtain a lower-level representation
Ev(f) ∈ R512×Tv by passing a video f through a 3D-CNN encoder
Ev to make it learn the temporal information between frames. We
adopt an architecture analogous to the audio encoder but with 3D
convolutions.
Modality-preserving encoding via transformers.

The existing transformer-based sync detectors [3, 4] blend audio
and visual features by exploiting cross-modal attentions to compute
a sync score. However, combining modalities within a model makes
contrastive learning difficult since a visual input should go through
transformers as many times as the number of audio examples. As it
requires more GPU memory, a large batch size, which is necessary

1Our CNN architecture differs from the one used by Petridis et al. [13] as
that work does not generate an individual feature map for each input frame.
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Fig. 2. Architecture of ModEFormer. It takes audio and video inputs
(m−, m+, f ) and yields respective embeddings (a−, a+, v). We
independently encodes the input audio and video by feeding them
through the CNN and modality-specific transformer encoders (E and
P ). We employ contrastive learning by minimizing an InfoNCE loss
between sync scores of the embeddings.

for contrastive learning, is not usable. We adopt contrastive learning,
which is known as effective for representing an embedding space and
improving model’s robustness. To this end, we preserve audio and
visual modalities and compute a sync score using features from each
modality unlike the previous methods.

For an audio feature extracted from the audio CNN, we first con-
catenate it with an audio class token ta, and then inject sinusoidal po-
sitional encodings [10]. We apply the audio transformer Pa, which
consists of four transformer modules, to the audio feature. Each
transformer encoder is a lighter version of the ViT-Base architecture
[15] with 4 layers. We use audio class token’s output from the trans-
former as ModEFormer’s final audio embedding a. We process a
video in the same way using the visual transformer Pv to obtain a
final visual embedding v.

2.2. Negative Sampling for Contrastive Learning

We sample two types of negative audio examples - 1) hard negatives
which are from the same video clip as the positive audio but tem-
porally shifted. These constitute relatively similar speech features
but partially or completely different phrasings. 2) Easy negatives
which are from different video clips constituting different phrasings
and speaker identities. We define the number of hard negatives used
as NH. For a given batch size of B, each video has one positive
audio and NH hard negative examples. We train our model in two
stages. In the first stage, we use NH = 2 hard negatives for each
batch entry. We do not use any easy negatives in this stage. Then in
the second stage of our training for each batch entry, we use positive



Table 1. Comparison of audio-video sync detectors on the LRS2 and LRS3 test sets. We measure the synchronization accuracies at different
clip lengths. “Var” indicates whether a model has seen clips with variable lengths during training. We only compare the sync detectors trained
with a fixed number of input frames. We highlight the best scores in boldface.

Clip Length in Frames (Seconds) # of params
Dataset Model Var 5 (0.2s) 7 (0.28s) 9 (0.36s) 11 (0.44s) 13 (0.52s) 15 (0.6s) (M=Millions)

AVST[3] ✓ 91.9 97.0 98.8 99.6 99.8 99.9 42.4M
SyncNet[1] 75.8 82.3 87.6 91.8 94.5 96.1 13.6M

LRS2 PM[2] 88.1 93.8 96.4 97.9 98.7 99.1 13.6M
VocaLiST[4] 92.8 96.7 98.4 99.3 99.6 99.8 80.1M

ModEFormer - Ours 94.5 97.1 98.5 99.3 99.7 99.8 59.0M

LRS3 AVST[3] ✓ 77.3 88.0 93.3 96.4 97.8 98.6 42.4M
ModEFormer - Ours 90.9 93.1 96.0 97.7 98.7 99.2 59.0M

audios and their hard negatives in the other batch entries as easy neg-
atives. The number of easy negatives in the second stage becomes
NE = (B− 1)× (1+NH). Due to the GPU memory limit, there is
a trade-off between batch size B and number of hard negatives NH,
i.e. only small number of hard negatives are usable when a batch size
is large. We study this trade-off in our experimental results to find
the best ratio for contrastive learning of audio-video sync detection.
Loss function. We first define a similarity ϕ between video embed-
ding v and audio embedding a as the dot product between their unit
vectors.

ϕ(v,a) =
v

|v| .
a

|a| . (1)

We minimize the InfoNCE loss formulated as

L = − 1

B

∑
v,a+∈P

log
e(ϕ(v,a

+)/τ)∑
a∈N (v) e

(ϕ(v,a)/τ)
, (2)

where P represents a set of video and positive audio pairs and N (v)
indicates a superset of positive, hard negative, and easy negative au-
dios of video v. τ is a temperature set as 0.1. The InfoNCE loss
maximizes the similarity of a video embedding with a positive audio
embedding and simultaneously minimizes it with multiple negative
audio embeddings.

3. EXPERIMENTAL RESULTS

We evaluate our method on benchmark datasets, conduct study of
the negative sampling for contrastive learning, and showcase our
method’s application as an offset detector.

3.1. Experimental Setup

We train ModEFormer using the Adam optimizer with a learning rate
of 0.0001. ModEFormer is trained in 2 stages. In the first stage, we
train the ModEFormer with a batch size of 2000 where each batch
entry is from a unique clip and has two corresponding hard negative
audio samples.

In the second stage, multiple entries in the same batch are drawn
from the same clip and report ablation results in Sec 3.3 and Sec 3.4
Datasets. We use two public benchmark datasets for audio-video
sync detection, LRS2 [11] and LRS3 [12]. Both LRS2 and LRS3
have English speakers only. LRS2 provides videos cropped around
speaker’s face and their corresponding audios. LRS2 consists of
96,318 pretrain, 45,839 train, 1,082 validation, and 1,243 test
videos. We train ModEFormer using the pretrain split and use the
validation and test video sets for validation and evaluation, respec-
tively. LRS3 consists of audio-video pairs from TED and TEDx.
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Fig. 3. Lip synchronization accuracies on LRS3 for different num-
ber of hard negatives. We measure the accuracy at six different clip
lengths. The number of hard negatives that maximizes the overall
accuracy is depicted in the grey vertical line.

For LRS3, both full-frames and cropped-frames are available, but
we use cropped-frames only to be consistent with LRS2. LRS3
includes 1,18,516 pretrain, 31,982 trainval, and 1,321 test videos.
We train ModEFormer on the pretrain set and create a validation set
by randomly sampling 40% of the trainval partition. Again, their
test partition is directly used as the test set. Please note that we
follow the standard setting in the previous work [4] to conduct fair
comparisons.

Evaluation metric. We measure performances of sync detectors
by the lip synchronization accuracy, which is a standard metric for
benchmarking [4]. For each input clip, we slide an audio window
within ±15 range centered on the audio with the zero offset. We
determine sync detector’s prediction is correct only when it gives
a maximum score within ±1 range. The final lip synchronization
accuracy is computed by the number of correct predictions over the
number of tested clips. We report the lip synchronization accuracy
for each algorithm at 6 different clip lengths which are 5, 7, 9, 11,
13, and 15. Since our ModEFormer only accepts 5 frames as the
input, we slide our model over 5 frame windows when the length of
the clip is longer than 5 frames and then average the cosine distance
to compute the accuracy as done in the conventional works [4]. Note
that longer clip lengths lead to higher accuracy as more context is
available.

3.2. Benchmark Results

Table 1 lists performance of ModEFormer against four different sync
detectors: SyncNet [1], PM [2], AVST [3], and VocaList [4]. We as-



Table 2. Results of 3D-SyncNet and ModEFormer on LRS3 test set

3D-SyncNet ModEFormer ModEFormer
(1st stage) (2nd stage)

Accuracy 80.2% 88.3% 90.9%

sess each algorithm using the lip synchronization accuracy at six dif-
ferent clip lengths. We observe that our ModEFormer significantly
and consistently outperforms all the existing methods that use a fixed
number of input frames. It is even more interesting to see that our
ModEFormer performs better than VocaLiST [4] considering their
model (80M parameters) is heavier than ours (59M parameters). We
believe the reason for such improvement is due to our modality-
preserving architecture and our sampling strategy allowing us to use
multiple hard negatives in contrastive learning. We do not directly
compare AVST with the other sync detectors because it has seen
clips of variable lengths as input during training. As can be seen in
Table 1, ModEFormer outperforms AVST significantly by 2.6% on
5-frames but AVST performs better when the length of the frames is
more than 7 frames with a difference of less than 0.3%. This can be
attributed to their model having the information of all frames when
it makes predictions, whereas we use the sliding window strategy
explained in Sec 3.1.

Table 1 shows synchronization accuracy of our ModEFormer
and AVST [3] on the LRS3 dataset. We present ModEFormer’s per-
formance here to demonstrate the generalizability of our approach.
Our ModEFormer achieves the SoTA on LRS3, which aligns with
the results on LRS2. To the best of our knowledge, there are no ex-
isting works that have evaluated sync detectors on LRS3’s cropped
faces. AVST’s accuracy is available for LRS3, but unfortunately,
they use full-frame videos.

3.3. Architecture Ablation

Table 2 compares 3D-SyncNet and ModEFormer in both the train-
ing stages as described in Sec. 3.1, on the LRS3 test set in terms
of the lip synchronization accuracy at the clip length of five frames.
We build 3D-SyncNet by ablating transformers from ModEFormer.
We train both the models with the same InfoNCE loss and sampling
strategy. Ablation of the transformer encoders decreases the perfor-
mance from 88.3% to 80.2%, which shows that attention helps in
learning better latent representations. Further, we also see the ben-
efit of the second stage training with more negative examples for
ModEFormer improving by 2.6%.

3.4. Negative Sampling Strategy

We experiment further to find the optimal number of hard nega-
tives between 2 to 25 by measuring the lip synchronization accuracy.
Fig. 3 illustrates the accuracies for LRS3 at clip lengths of 5, 7, 9, 11,
13, and 15 frames in accordance with the number of hard negatives.
We see that the overall lip sync accuracy peaks when the number of
hard negatives is 11. This shows that balancing between the number
of hard negatives and batch size is important to maximize perfor-
mance.

3.5. Offset Detection

We apply a trained ModEFormer to detect any audio-video lag in a
given test clip. For a given clip, we compute the cosine similarities
at every video frame for audio windows in its neighborhood as de-
scribed in Sec 3.1. We identify the predicted offset for each video
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Fig. 4. Histogram of predicted offsets for ModEFormer models
tested on out of distribution datasets

frame as the audio window with the highest cosine similarity. Then
we generate the histogram of predicted offsets for each of the video
frames in the test clip as shown in Fig. 4. The largest peak of the pre-
dicted offset histogram indicates the offset in the test clip. Note that
this offset is in comparison to the training dataset used for training
the ModEFormer.

Using this mechanism, we discovered that the LRS2 and LRS3
datasets are not in sync with one another. The largest peak of the
predicted offset is +1 (+0.04s) when using a ModEFormer trained
on LRS2 and tested on the LRS3 test set, Fig. 4(a). In parallel, for a
ModEFormer trained on LRS3 and tested on LRS2 test set, the offset
is at −1 (-0.04s), Fig 4(c). To hypothesize which of the datasets is
out of sync, we tested models from both LRS2 and LRS3 on an out of
distribution test dataset of 1,568 random clips from VoxCeleb2 [16]
which is a multi-lingual dataset with noisier audio than LRS2 and
LRS3 [17]. We find that an LRS3 trained model has the largest peak
of the predicted offset at 0, Fig. 4(d) while the largest peak of the
predicted offset for an LRS2 trained model is 1, Fig. 4(b). These
results lead us to hypothesize that LRS3 and VoxCeleb2 are in sync
while LRS2 is out of sync.

Further, if we shift the audio windows in the LRS2 test set with
an offset of +1, the accuracy of the LRS3 model on the test set in-
creases from 88.27% to 91.39%. In future experiments, we recom-
mend accounting for this offset when reporting performance across
the datasets.

4. CONCLUSION

We present a modality-preserving sync detector, ModEFormer,
which yields state-of-the-art performance on both the LRS2 and
LRS3 datasets. Since ModEFormer preserves the modality, we are
able to trade-off between the number of negative examples and
the number of unique samples in a batch to find the most optimal
configuration. Further, we demonstrate offset detection using Mod-
EFormer for an out-of-distribution test dataset and hypothesize that
LRS2 and LRS3 are out-of-sync by +0.04 seconds
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